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ABSTRACT
Despite recent significant progress on generative models, context-
rich text-to-image synthesis depicting multiple complex objects is
still non-trivial. The main challenges lie in the ambiguous semantic
of a complex description and the intricate scene of an image with
various objects, different positional relationship and diverse ap-
pearances. To address these challenges, we propose R-GAN, which
can generate reasonable images according to the given text in a
human-like way. Specifically, just like humans will first find and
settle the essential elements to create a simple sketch, we first cap-
ture a monolithic-structural text representation by building a scene
graph to find the essential semantic elements. Then, based on this
representation, we design a bounding box generator to estimate
the layout with position and size of target objects, and a following
shape generator, which draws a fine-detailed shape for each ob-
ject. Different from previous work only generating coarse shapes
blindly, we introduce a coarse-to-fine shape generator based on a
shape knowledge base. At last, to finish the final image synthesis,
we propose a multi-modal geometry-aware spatially-adaptive gen-
erator conditioned on the monolithic-structural text representation
and the geometry-aware map of the shapes. Extensive experiments
on the real-world dataset MSCOCO show the superiority of our
method in terms of both quantitative and qualitative metrics.
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Figure 1: Our human-like way of reasonable text-to-image
synthesis process.
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1 INTRODUCTION
Generating images from text has aroused extensive research interest
since it connects the research fields of computer vision and natural
language processing. It requires capturing semantic information
from a description and then generating a semantically aligned
image according to the description. Recently, many researches [17,
19, 36, 39] seek to synthesise a photo-realistic image from textual
description and have achieved promising performance. Since it
is difficult to learn a direct mapping from text to image, some
hierarchical methods [10, 17] have been proposed, which construct
a semantic layout as intermediate representations to bridge the gap
between text and image.

However, the success of these approaches still remains several
limitations in the following aspects. First, not only the generated
image should be realistic, but also its objects should match the
semantic relationships of the text. When handling a complex de-
scription, most of existing methods [10, 39] just feed it into a simple
LSTM model and then obtain a holistic text embedding, in which
many important semantic information, e.g. , spatial and semantic re-
lations between objects, has not been explicitly excavated. Second,
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unlike simple datasets that involves only a single object such as
birds [33] or flowers [24] that require learning one class of objects,
the context-rich dataset MSCOCO [20] often contain more complex
scenes and a wide variety of objects, e.g. , person, elephant, car. Due
to lack of the knowledge of object shapes to guide image generation,
many methods [10, 17] can only blindly generate coarse shapes.
As a result, shapes of the objects generated in this way are often
unrecognisable and unreasonable. Third, when generating target
images, many existing methods [17] simply use an encoder-decoder
structure, the semantic information of the generated shapes from
previous steps may be washed away in the process of normalisation,
which is crucial for generating meaningful and reasonable images.

To address the above mentioned issues, in this paper we propose
R-GAN to synthesise a context-rich and reasonable image from
the given intricate description in a human-like way. As shown in
Figure 1, our approach imitates the drawing process of human that
is usually hard to finish in one step, and decomposes the text-to-
image generation into a multi-step task. Similar to what people
usually do, given the text description “A young man standing left
to a bus.”, the drawing starts with a scene graph parser which finds
the essential semantic elements(‘man’, ‘bus’ and ‘left to’) in the text
and a rough but reasonable layout as a simple sketch, taking into
account the position and size of the man and bus in the image. Then,
our approach learns the shapes of a standing man and the bus from
the prior knowledge base, which are used to generate the semantic
shape map as a preliminary drawing. When it is complete, we color
the draft with reasonable details of the man, bus and background.

The R-GAN consists of four components: text representation,
layout estimation, coarse-to-fine shape generation and image syn-
thesis. We first build a monolithic-structural text representation
to handle the complex description. The representation combines
both the holistic feature from the whole sentence and the struc-
tural feature by building a scene graph from the text. In this way,
it can capture the information of objects and their relationships
well. Based on the text representation, we then predict a layout of
objects using a bounding box generator. To address the second issue,
we design a shape knowledge base and propose a coarse-to-fine
shape generator to generate shapes. Unlike existing methods that
often yield incomplete shapes, we generate a sharper and more
complete shape via a shape gradient-sensitive loss. Last, we devise
a multi-modal geometry-aware spatially-adaptive generator with a
multi-scale discriminator to color the semantic shape map, which
preserves the semantics by feeding multi-scale shapes into different
generative layers. In addition, during the whole generation pro-
cess, our human-like method keeps the textual information in mind
at each stage, avoiding the deviation between the intermediate
generation process and the original text, helping a lot to generate
reasonable images. To evaluate the performance of R-GAN, we
conduct experiments on the context-rich dataset MSCOCO [20] in
both quantitative and qualitative metrics.

In summary, we make the following contributions in this work:
• We propose a novel Generative Adversarial Network called
R-GAN to produce photo-realistic and reasonable images
from the corresponding intricate descriptions by imitating
the drawing process of human.
• To well capture the information from an intricate descrip-
tion, we design a monolithic-structural text representation,

which seeks to sort out the objects and their relationships by
using a scene graph. To generate a recognisable, complete
and reasonable shape, we propose a coarse-to-fine shape
generator based on shape knowledge base. To generate a
fine-grained and reasonable image with semantic alignment,
we devise a multi-modal spatially-adaptive geometry-aware
generator conditioned on a geometry-aware map, which
avoids common normalisation and can preserve the seman-
tic information of the given shape.
• Extensive quantitative and qualitative evaluations are con-
ducted on MSCOCO dataset, which demonstrates the effec-
tiveness of our model compared with SOTA methods.

2 RELATEDWORK
Text-to-Image Synthesis. There have been many studies for

the text-to-image synthesis task, such as Variational Autoencoders
(VAE) [16, 29] and Autoregressive models [32]. To generate sharper
images, many GAN-based methods [14, 18, 26, 28, 36–39, 41] have
been proposed. Reed et al. [28] first attempted to apply GAN to text-
to-image synthesis. Zhang et al. [39] propose a hierarchical network,
namely StackGAN, which generates images of different sizes. Based
on StackGAN, Xu et al. [36] develop an attention mechanism, which
ensures the alignment between generated fine-grained images and
the corresponding word-level conditions. More recently, to preserve
the semantic consistency, Qiao et al. [26] consider both text-to-
image and image-to-text problems jointly. Hinz et al. [8] introduce
an additional object pathway to the generator and the discriminator
to control the location of objects within images. Liang et al. [19]
propose CPGAN, which concentrates on content-oriented parsing
on both the text descriptions and generated images to learn the
consistency of text and image from semantic level.

To bridge the gap between text and image, Hong et al. [10] design
a hierarchical approach that first constructs a semantic layout as
an intermediate representation. The layout generator constructs
a semantic label map from text and then convert the layout to an
image. Following the generation process of [10], Li et al. [17] pro-
pose a multi-stage Object-driven Attentive Generative Adversarial
Networks (Obj-GAN), which contains an object-driven attentive
image generator and an object-wise discriminator. We follow a
similar pipeline with [17] but focus more on details. To be specific,
we design a monolithic-structural text representation to predict the
reasonable layout of objects. Then a coarse-to-fine shape generator
is devised to learn the knowledge of object to generate more real-
istic and reasonable shapes. In addition, a gradient-sensitive loss
is utilized on shape generation process, which aims to generate a
sharp, complete and recognisable shapes. Furthermore, different
from all the above methods, we propose a semantic image synthesis
method to the draft when we have the semantic shape maps.

Semantic Image Synthesis. Given a semantic layout, there are
many approaches to generate photo-realistic images [2, 12, 21, 25,
35]. Isola et al. [12] propose Pix2pix, which is an image-to-image
translation framework with image-conditional GANs. Following
[12]’s framework, Wang et al. [35] propose Pix2pixHD, which con-
tains a coarse-to-fine generator and a multi-scale discriminator to
generate high-resolution images. Park et al. [25] propose SPADE,
which uses semantic label mapping to predict affine transformation
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Figure 2: Main architecture of the proposed R-GAN, which is composed of four major parts:Monolithic-Structural Text Rep-
resentation (Section 3.1), Layout Estimation (Section 3.2), Coarse-to-fine Shape Generation(Section 3.3) and Image Synthesis
(Section 3.4).

parameters to modulate activation in the normalisation layer. In
our work, based on the SPADE, we redesign the generator archi-
tecture. Specifically, we propose a multi-modal geometry-aware
spatially-adaptive module conditioned on a multi-scale shape map
to synthesise images that retain semantic information.

3 METHODS
As shown in Figure 2, the proposed a Generative Adversarial Net-
work R-GAN consists of four components: 1) text representation, 2)
layout estimation, 3) coarse-to-fine shape generation and 4) image
synthesis. Specifically, to sort out the objects and their relationships
from a complex description, we design a monolithic-structural text
representation, which combines a holistic feature from the whole
sentence and a structural feature by building a scene graph. As
for drawing the sketch, we first generate a rough but reasonable
layout containing both position and size for each object by using
bounding boxes and then outline different shapes for different boxes
according to their categories and semantic context. To generate
a fine-detailed shape for each object, we devise a coarse-to-fine
shape generator based on a pre-constructed shape knowledge base.
Besides, we use a shape gradient-sensitive loss to generate sharper
and more complete shapes, which focuses on the contour of shapes.
Conditioned on such a multi-scale shape map, we propose a multi-
modal geometry-aware spatially-adaptive generator to produce the
target image, which can well preserve the semantic information of

the given shape and can generate realistic and reasonable images.
We will depict more details in the following sections.

3.1 Monolithic-Structural Text Representation
The monolithic-structural text representation consists of two com-
ponents: structural representation of objects, and monolithic repre-
sentation of sentences.
Structural Representation To capture the information of objects
and their relationships, we parse the linguistic description into a
scene graph [15]. We employ the Standford Scene Graph Parser [30]
to convert an text description 𝑡 to a scene graph G = (V, E), which
is a Directed Acyclic Graph (DAG). Here,V = {v1, v2, ..., v𝐾 } refers
to a set of objects which have beenmentioned in the text description
𝑡 , and𝐾 is the number of objects. E ⊆ V×R×V is a set of directed
edges, where R is a set of relationships among objects. Each edge
e𝑖 𝑗 ∈ E can be defined as a triplet e𝑖 𝑗 = (v𝑖 , r𝑖 𝑗 , v𝑗 ), where r𝑖 𝑗 ∈ R
is a relationship label from v𝑖 to v𝑗 . After obtaining the graph, we
use a learned embedding layer to convert each node and relationship
of the graph to a dense vector. For the simplicity, we reuse notations
of v and r to represent the node and relationship feature vectors in
the following sections.

Inspired by [14], we process and update the objects and their
relationships in graphGwith three functions 𝑓𝑠 , 𝑓𝑟 and 𝑓𝑒 . They take
as input a triple of vectors (v𝑖 , r𝑖 𝑗 , v𝑗 ) of an edge, and output new
vectors ṽ𝑖 and r̃𝑖 𝑗 as embeddings for the objects and relationships,
respectively. For the embedding of relationship, we simply obtain
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the output vector via r̃𝑖 𝑗 = 𝑓𝑟 (e𝑖 𝑗 ) = 𝑓𝑟 (v𝑖 , r𝑖 𝑗 , v𝑗 ). Updating the
object vector is more complex since an object may contain multiple
relationships. Hence, for each edge starting at v𝑖 , we use 𝑓𝑠 to
calculate a candidate vector and collect all these candidates in a set
V𝑠
𝑖
. Formally,

V𝑠𝑖 = {𝑓𝑠 (e𝑖 𝑗 ) | e𝑖 𝑗 = (v𝑖 , r̃𝑖 𝑗 , v𝑗 ) ∈ E }. (1)

Similarly, we use 𝑓𝑒 to compute a set of candidate vectorsV𝑒
𝑖
for

all the edges ending at v𝑖 . Mathematically,

V𝑒𝑖 = {𝑓𝑒 (e𝑗𝑖 ) | e𝑗𝑖 = (v𝑗 , r̃𝑗𝑖 , v𝑖 ) ∈ E }. (2)

We finally obtain the updated object vector ṽ𝑖 = 𝑔(V𝑠𝑖 ∪ V
𝑒
𝑖
),

where 𝑔(·) denotes an element-wise average pooling function. For
the functions 𝑓𝑠 , 𝑓𝑟 and 𝑓𝑒 , we follow [14] to use a network which
concatenates three input vectors and feeds them to a multilayer
perceptron (MLP).
Monolithic-structural Representation In addition to the struc-
tural features, we also consider the semantics from the whole sen-
tence since a global understanding of the given description is neces-
sary. To this end, we use an LSTM [9] to extract the vector from the
text description 𝑡 via u = 𝐿𝑆𝑇𝑀 (𝑡) as monolithic representation.

To combine the structural and monolithic information, we con-
catenate the global vector uwith each object vector ṽ𝑖 ∈ {ṽ1, ṽ2 ...̃v𝐾 }
and then get the target monolithic-structural representation o𝑖 ∈
{o1, o2 ...o𝐾 }, where o𝑖 = [ṽ𝑖 ; u].

3.2 Layout Estimation
Based on themonolithic-structural representation o𝑖 ∈ {o1, o2 ...o𝐾 },
in this part, we aim to generate a coarse layout by predicting a la-
belled bounding box 𝐵𝑖 ∈ {𝐵1, 𝐵2, ...𝐵𝐾 } for each object.

Specifically, we define each box𝐵𝑖 = (b𝑖 , l𝑖 ), where b𝑖 = (𝑏𝑖,𝑥 , 𝑏𝑖,𝑦 ,
𝑏𝑖,𝑤 , 𝑏𝑖,ℎ) ∈ R4 denotes the coordinate of the predicted box while
l𝑖 denotes the predicted category for the 𝑖-th object by using an
one-hot label. Inspired by [10], we use an LSTM model as the box
generator to produce the bounding box incrementally. To gener-
ate the 𝑖-th labelled bounding box 𝐵𝑖 , we first predict the label
l𝑖 for the 𝑖-th object and then predict the corresponding coordi-
nate b𝑖 . Mathematically, we define the conditional probability as
𝑝 (𝐵𝑖 |·) = 𝑝 (b𝑖 , l𝑖 |·) = 𝑝 (l𝑖 |·)𝑝 (b𝑖 |l𝑖 , ·).

To get probability 𝑝 (𝐵𝑖 |·), we first use the LSTM-based gen-
erator to approximate the probability 𝑝 (l𝑖 |·). For the 𝑖-th step of
LSTM, based on the previously generated box 𝐵1:𝑖−1, we feed the
𝑖-th object vector o𝑖 into the LSTM and output an embedding e𝑖
followed by a Softmax function. Mathematically, we define 𝑝 (l𝑖 |·)
as 𝑝 (l𝑖 |𝐵1:𝑖−1, o𝑖 ) = Softmax(e𝑖 ).

Based on the predicted label l𝑖 , we further approximate the prob-
ability 𝑝 (b𝑖 |l𝑖 , ·) by a GaussianMixture Model (GMM)with multiple
normal distributions as in [5]. Formally, the function is defined as

𝑝 (b𝑖 |l𝑖 , 𝐵1:𝑖−1, o𝑖 ) =
𝑁∑
𝑛=1

𝜋𝑖,𝑛N
(
b𝑖 ; `𝑖,𝑛,Σ𝑖,𝑛

)
, (3)

where N
(
b𝑖 |`𝑖,𝑛,Σ𝑖,𝑛

)
denotes the 𝑛-th normal distribution at 𝑖-th

step, and they are totally have 𝑁 normal distributions at each step.
The parameters 𝜋𝑖,𝑛 , `𝑖,𝑛 and Σ𝑖,𝑛 are also generated by the above
LSTM.

Loss Function To optimise the box generator model, we use a
negative log-likelihood loss

L𝑏𝑜𝑥 = − 1
𝐾

𝐾∑
𝑖=1

l∗𝑖 log 𝑝 (l𝑖 ) − _
1
𝐾

𝐾∑
𝑖=1

log 𝑝 (b∗𝑖 ), (4)

where 𝐾 refers to the number of objects in an image while _ is a
hyper-parameter to balance these two terms, we set _ = 0.25. b∗

𝑖
and l∗

𝑖
denote the coordinates of the ground-truth bounding box

and the corresponding ground-truth label for the 𝑖-th object.

3.3 Coarse-to-Fine Shape Generation
This part consists of three steps: shape knowledge base construction,
text-relevant shape selection, and shape editing.
Shape Knowledge Base Construction We collect shapes from
MSCOCO instance-wise annotations, which consists of 597,701
shape images from 80 categories (e.g. , person, bicycle, car, etc. ).
Then, on accounting of performance and computation efficiency,
we use ResNet50 [6] to extract shape feature for each shape image.
Next, we use K-means [22] method to cluster the extracted features
of each category into 10 groups, and each group has 3 shape im-
ages which are closest to the cluster center. This gives us a shape
knowledge base that we can choose relevant shapes corresponding
to the objects mentioned in the textual description.
Text-relevant Shape Selection To select a text-relevant shape,
we utilize CLIP [27], a model pre-trained on large-scale image-text
description pairs, which learns a multi-modal embedding space that
can be used to calculate the semantic similarity between the text
description and the image.

Specifically, we first use the object category obtained from the
previous stage (see Section 3.2) to find the corresponding shape
candidates {s1, s2, · · · , s𝑛}.

Then, we use the CLIP image encoder to encode shape candidates
{s1, s2, · · · , s𝑛} to shape features {𝑓 (s1), 𝑓 (s2), ...𝑓 (sn)}, and use
CLIP text encoder to encode text description 𝑡 to text feature 𝑔(t).
The similarity score between the text description 𝑔(t) and shape
candidates is computed via

𝑆𝑖𝑚𝑛 (s𝑛, t) = Softmax(𝑔 (t) · 𝑓 (sn)𝑇 ) . (5)

We select the maximum similarity shape as input to the shape
generator.
Shape Editor Shape generator 𝐺𝑠ℎ𝑎𝑝𝑒 takes both the selected
shape and text information as inputs. The goal of 𝐺𝑠ℎ𝑎𝑝𝑒 is to
generate the shape according to text and selected shape. We first
encode the selected shape by down-sampling layers and then use
bi-directional Convolutional LSTM to capture the feature from it.
After concatenating the feature with 𝑖-th random noise z𝑖 and the
monolithic representation u, the concatenated feature is fed into
several residual blocks, and mapped to a binary shape M𝑖 ∈ R𝐻×𝑊 .
Given 𝐾 selected shape tensors S1:𝐾 = {S1, S2, ...S𝐾 }, we define the
process of shapes edition as

M1:𝐾 = 𝐺𝑠ℎ𝑎𝑝𝑒 (S1:𝐾 , z1:𝐾 , u) , (6)

where z1:𝐾 = {z1, z2 ...z𝐾 } ∼ N (0, I) is a series of random noise vec-
tors, u refers to the monolithic text representations (See Section 3.1),
M1:𝐾 denotes the generated shapes.
Loss Function To encourage the generator to generate better
shapes, we use two discriminators at both object and global (i.e. ,
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aggregated image) levels respectively: object discriminator 𝐷𝑜𝑏 𝑗𝑒𝑐𝑡
and global discriminator 𝐷𝑔𝑙𝑜𝑏𝑎𝑙 . Here, we simply use the CNN
model as the encoder in both object and global discriminators. The
encoder takes a concatenation of box and shape as input and outputs
the probability of the shape being real.

For the 𝑖-th object, we optimise the discriminator𝐷𝑜𝑏 𝑗𝑒𝑐𝑡 viamin-
imisingL (𝑖)

𝐷𝑜𝑏 𝑗𝑒𝑐𝑡
= − log𝐷𝑜𝑏 𝑗𝑒𝑐𝑡 (B∗𝑖 ,M

∗
𝑖
)−log(1−𝐷𝑜𝑏 𝑗𝑒𝑐𝑡 (B∗𝑖 ,M𝑖 )),

where B∗
𝑖
is the ground-truth box tensor for 𝑖-th object. And M𝑖 and

M∗
𝑖
denote the generated shape and ground-truth shape of the 𝑖-th

object, respectively. In this sense, the loss L𝐷𝑜𝑏 𝑗𝑒𝑐𝑡 can be defined
as L𝐷𝑜𝑏 𝑗𝑒𝑐𝑡 = 1

𝐾

∑𝐾
𝑖=1 L

(𝑖)
𝐷𝑜𝑏 𝑗𝑒𝑐𝑡

. Thus, the corresponding generator
loss can be defined as

L (𝑖 )
𝑜𝑏 𝑗𝑒𝑐𝑡

= − log(𝐷𝑜𝑏 𝑗𝑒𝑐𝑡 (B∗𝑖 ,M𝑖 )) . (7)

Similarly, we define the loss L𝑜𝑏 𝑗𝑒𝑐𝑡 for generator 𝐺𝑠ℎ𝑎𝑝𝑒 as
L𝑜𝑏 𝑗𝑒𝑐𝑡 = 1

𝐾

∑𝐾
𝑖=1 L

(𝑖)
𝑜𝑏 𝑗𝑒𝑐𝑡

. Similar to the object discriminator, we
optimise the global discriminator 𝐷𝑔𝑙𝑜𝑏𝑎𝑙 by minimising

L𝐷𝑔𝑙𝑜𝑏𝑎𝑙 = − log𝐷𝑔𝑙𝑜𝑏𝑎𝑙 (B
∗
𝑔𝑙𝑜𝑏𝑎𝑙

,M∗
𝑔𝑙𝑜𝑏𝑎𝑙

)
− log(1 −𝐷𝑔𝑙𝑜𝑏𝑎𝑙 (B∗𝑔𝑙𝑜𝑏𝑎𝑙 ,M𝑔𝑙𝑜𝑏𝑎𝑙 )),

(8)

where M∗
𝑔𝑙𝑜𝑏𝑎𝑙

and M𝑔𝑙𝑜𝑏𝑎𝑙 denote the ground-truth and generated
shapes, respectively, which are aggregated by element-wise addi-
tion over M∗1:𝐾 and M1:𝐾 . The B∗

𝑔𝑙𝑜𝑏𝑎𝑙
is an integrated ground-truth

box tensor obtained by taking element-wise maximum over B∗1:𝐾 .
Similarly, we can optimise the generator 𝐺𝑠ℎ𝑎𝑝𝑒 by

L𝑔𝑙𝑜𝑏𝑎𝑙 = − log(𝐷𝑔𝑙𝑜𝑏𝑎𝑙 (B∗𝑔𝑙𝑜𝑏𝑎𝑙 ,M𝑔𝑙𝑜𝑏𝑎𝑙 ) . (9)

To ensure the generated shapes can semantically align with the
ground-truth ones, we adopt a widely used reconstruction loss [3,
13, 34] L𝑟𝑒𝑐 = ∥Φ(M𝑔𝑙𝑜𝑏𝑎𝑙 ) − Φ(M∗𝑔𝑙𝑜𝑏𝑎𝑙 )∥2, where Φ(·) refers to
the pretrained VGG-19 model [31], which is used to extract the
feature from the given shape image.

To sharpen the shape for each object, inspired by [23], we design
a shape gradient-sensitive loss, which pays attention to the outline
of shape. The loss between generated shape M𝑔𝑙𝑜𝑏𝑎𝑙 and ground-
truth shape M∗

𝑔𝑙𝑜𝑏𝑎𝑙
can be defined as

L𝑔𝑟𝑎𝑑 = ∥∇𝑥M𝑔𝑙𝑜𝑏𝑎𝑙 − ∇𝑥M∗
𝑔𝑙𝑜𝑏𝑎𝑙

∥2 + ∥∇𝑦M𝑔𝑙𝑜𝑏𝑎𝑙 − ∇𝑦M∗
𝑔𝑙𝑜𝑏𝑎𝑙

∥2,
(10)

where ∇𝑥M𝑔𝑙𝑜𝑏𝑎𝑙 (∇𝑥M∗
𝑔𝑙𝑜𝑏𝑎𝑙

) and ∇𝑦M𝑔𝑙𝑜𝑏𝑎𝑙 (∇𝑦M∗
𝑔𝑙𝑜𝑏𝑎𝑙

) refer to
the directional gradients of M𝑔𝑙𝑜𝑏𝑎𝑙 (M∗𝑔𝑙𝑜𝑏𝑎𝑙 ) along the horizontal
(denoted by 𝑥 ) and vertical (denoted by 𝑦) directions, respectively.

Finally, we define the objective loss function as
L𝐺𝑠ℎ𝑎𝑝𝑒 = _1L𝑜𝑏 𝑗𝑒𝑐𝑡 + _2L𝑔𝑙𝑜𝑏𝑎𝑙 + _3L𝑟𝑒𝑐 + _4L𝑔𝑟𝑎𝑑 , (11)

We set _1 = 1, _2 = 1, _3 = 10, _4 = 1.
Semantic Shape Map Generation Previous works use a 3-D (𝐻 ,
𝑊 , 𝐿) mask tensor𝑀 with binary value (0,1) to represent the shape,
where 𝐻 represents height,𝑊 represents width and 𝐿 represents
all categories of objects. Different from these methods, R-GAN
generates a semantic shape map. To be specific, we transform the
3-D mask tensor to a 2-D (𝐻 ,𝑊 ) map tensor𝑚 with a set of integer
values 𝐿 where each integer value represents a category of objects.
In other words, each pixel in the map𝑚 will be allocated with an
integer value according to their label categories. For example, as

Generated	imageSemantic	shape	map

bottle(44)

cup(47)

cup(47)

bottle(44)

Figure 3: Illustration of semantic shapemap, of which labels
and corresponding pixel values are displayed.
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Deep Attentional Multimodal Similarity Model
(DAMSM)

Semantic 
Shape Map

Figure 4: Overview of image synthesis. The input shape 𝑀
contains shapemap, contourmap and geometry-awaremap.
We first feed the shape into a Unet and obtain a series of fea-
tures from different layers. By combining the features with
noise z and monolithic text representation u, we produce a
target image via a geometry-aware spatially-adaptive gener-
ator. To enable the generator to yield a photo-realistic image,
we propose a multi-scale discriminator to estimate images
in different resolutions.

shown in Figure 3, the pixel value of “clock” is 85, and the pixel
value of “cup” is 47.

3.4 Image Synthesis
In this part, we seek to synthesise a real-world image from the
given semantic shape map and the textual context. To this end,
we first build a shape triplet, and then we extract a multi-scale
shape embedding. Based on the shape embedding and monolithic
text representation, we propose a multi-modal geometry-aware
spatially-adaptive generator to produce the target image semanti-
cally aligned with them.
Shape Information Extraction Before generating images, we
need to extract the semantic information and build a shape triplet
from the given shapes. The shape triplet consists of a shape map, a
contour map and a geometry-aware map. The shape map contains
shape and category information of the object, the contour map
contains the contour information of the object, and the geometry-
aware map contains geometry information.

In practice, even in the same category, the appearance of different
instances may still vary dramatically due to their various geometry
properties such as the object scale. As shown in Figure 4, the large
giraffe in the middle has an obviously different texture from the
two small giraffes around it. Therefore, images should be generated
differently for objects of different scales.
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To capture this geometry information, we design a geometry-
aware map M̃1:𝑇 , which divides the object shapes into different
scales. Specifically, the scale of an object is defined as the long side
of its bounding box. Suppose we have 𝑇 scale ranges, for objects
that fall into the 𝑡-th (0 < 𝑡 < 𝑇 ) scale range, all the pixels inside
those objects will be assigned with the value 1 and the background
pixel values are set to zero in M̃𝑡 . We set T=3, which is the number
of scale groups [32, 64), [64,128), [128, 256].

Unlike the previous methods that compress the shape informa-
tion into a normalised single-scale embedding, we instead learn
multi-scale embeddings (see Figure 4) through a Unet module:

s0:𝑁−1 = Unet(𝑀), (12)
where s0:𝑁−1 refer to 𝑁 shape embeddings from different layers
of a Unet while𝑀 = (M𝑔𝑙𝑜𝑏𝑎𝑙 ,∇𝑥𝑦M𝑔𝑙𝑜𝑏𝑎𝑙 , M̃1:𝑇 ) denotes a shape
triplet. Here, M𝑔𝑙𝑜𝑏𝑎𝑙 denotes the shape map generated from the
Section 3.3. ∇𝑥𝑦M𝑔𝑙𝑜𝑏𝑎𝑙 and M̃1:𝑇 are the contour map and the
geometry-aware map, respectively. Note that ∇𝑥𝑦M𝑔𝑙𝑜𝑏𝑎𝑙 is an
aggregated shape gradient combining by∇𝑥M𝑔𝑙𝑜𝑏𝑎𝑙 and∇𝑦M𝑔𝑙𝑜𝑏𝑎𝑙 .
In practice, we concatenate M𝑔𝑙𝑜𝑏𝑎𝑙 , ∇𝑥𝑦M𝑔𝑙𝑜𝑏𝑎𝑙 and M̃1:𝑇 together
as the input of a Unet model.
Multi-modal Geometry-aware Spatially-adaptive Generator
To generate the target image, we propose a multi-modal geometry-
aware spatially-adaptive generator 𝐺𝑖𝑚𝑎𝑔𝑒 (see Figure 4). The gen-
erator takes a random noise z, the monopolistic text representation
u1 (extracted in Section 3.1) and the shape embeddings s0:𝑁−1 as in-
puts, and outputs a target image semantically and spatially aligned
with them. Formally, we define the process as

𝑋 = 𝐺𝑖𝑚𝑎𝑔𝑒 (s0:𝑁−1, z, u) . (13)

where 𝑋 refers to the generated image, and z ∼ N(0, I). The gen-
erator 𝐺𝑖𝑚𝑎𝑔𝑒 consists of several ResNet blocks [6] with upsam-
pling layers. To effectively propagate the semantic information
throughout the network, rather than using the traditional Batch
Normalisation (BN) [11], we adopt the famous SPADE [25] for all
the normalisation layers inside the ResNet blocks. Specifically, for
the 𝑖-th SPADE, we first compute two spatially-adaptive affine mod-
ulation parameters 𝜸𝑖 ∈ Rℎ×𝑤×𝑐 and 𝜷𝑖 ∈ Rℎ×𝑤×𝑐 from s𝑖 by two
single-layer convolutional networks:

𝜸𝑖 = Conv𝛾 (s𝑖 ) and 𝜷𝑖 = Conv𝛽 (s𝑖 ) . (14)

Then, we transform the 𝑖-th intermediate feature2 x𝑖 ∈ Rℎ×𝑤×𝑐
from the previous layers by

x𝑖 ← Norm(x𝑖 ) ×𝜸𝑖 + 𝜷𝑖 , (15)

where Norm(·) normalises x𝑖 using batch statistics like BN while ℎ,
𝑤 and 𝑐 denote height, width and depth of the intermediate feature
x𝑖 , respectively. Note that, SPADE only normalises x𝑖 so that the
semantic information from s𝑖 is still preserved.
Multi-scale Discriminator To ensure the quality of generated
objects in different scales and sizes, we propose a multi-scale dis-
criminator, which considers both large and small objects jointly.
We resize the ground-truth image 𝑋 ∗ and generated image 𝑋 with
𝑁 different scales, i.e. 𝑋 ∗ = {𝑋 ∗

𝑖
}𝑁−1
𝑖=0 and 𝑋 = {𝑋𝑖 }𝑁−1𝑖=0 . For the

1Here we use the monopolistic representation only since the final image generation
stage relies more on the global context.
2We generate the 0-th intermediate feature x0 using a single-layer convolutional
network from a concatenation of z and u.

ground-truth shape triplet 𝑀∗, we also resize it as the same way,
i.e. , 𝑀∗ = {𝑀∗

𝑖
}𝑁−1
𝑖=0 . Our multi-scale discriminator 𝐷𝑖𝑚𝑎𝑔𝑒 (see

Figure 4) consists of several sub-discriminators 𝐷𝑖𝑚𝑎𝑔𝑒 = {𝐷𝑖 }𝑁−1𝑖=0 ,
which are actually 𝑁 CNN encoders with the different number
of convolutional layers. We feed a concatenation of ground-truth
shape triplet𝑀∗

𝑖
and real image 𝑋 ∗

𝑖
(or fake image 𝑋𝑖 ) into the 𝑖-th

discriminator 𝐷𝑖 , and the discriminator outputs a probability to
indicate whether the input image is real or not.
Loss Function To optimise discriminators 𝐷𝑖𝑚𝑎𝑔𝑒 = {𝐷𝑖 }𝑁−1𝑖=0 and
generator𝐺𝑖𝑚𝑎𝑔𝑒 , we use an adversarial loss, which can be defined
in two parts. First, we optimise each discriminator 𝐷𝑖 by

L𝐷𝑖 = −log(𝐷𝑖 (𝑀
∗
𝑖 , 𝑋

∗
𝑖 )) − log(1 −𝐷𝑖 (𝑀∗𝑖 , 𝑋𝑖 )), (16)

where 𝑋 ∗
𝑖
and 𝑋𝑖 denote the ground-true and generated images in

the 𝑖-th scale, respectively. In this way, the total loss for 𝐷𝑖𝑚𝑎𝑔𝑒 =
{𝐷𝑖 }𝑁−1𝑖=0 can be defined as L𝐷𝑖𝑚𝑎𝑔𝑒 = 1

𝑁

∑𝑁−1
𝑖=0 L𝐷𝑖 . Then, we

optimise the generator 𝐺𝑖𝑚𝑎𝑔𝑒 by

L𝐺𝑖𝑚𝑎𝑔𝑒 = − 1
𝑁

𝑁−1∑
𝑖=0

log(𝐷𝑖 (𝑀∗𝑖 , 𝑋𝑖 )) . (17)

To make generated images better conditioned on text descrip-
tions, we utilize the deep multi-modal attentive similarity model
(DAMSM) [36] loss which measures the matching degree between
images and text descriptions.

Finally, the complete loss is
L𝐺 = L𝐺𝑖𝑚𝑎𝑔𝑒 + _𝐷𝐴𝑀𝑆𝑀L𝐷𝐴𝑀𝑆𝑀 . (18)

Following previous work, we set _𝐷𝐴𝑀𝑆𝑀 = 50.

4 EXPERIMENTS
4.1 Datasets and Implementation Details
For context-rich text-to-image generation, we conduct all the ex-
periments on the MSCOCO [20] dataset, where the images contain
intricate scenes with linguistic descriptions. We use the official train
and validation splits, i.e. , the training set contains 80k images while
the validation set contains 40k images from 80 object categories.

We generate images with size 256× 256 and optimise the R-GAN
model step-by-step. For training, we optimise the box generator
with 1 batch size for 10 epochs, trained on the provided objects
bounding boxes in COCO. As for the shape generator, we train the
model with 16 batch size and 30 epochs, with the objects segmen-
tation mask. As for image generator (i.e. , multi-modal geometry-
aware spatially-adaptive generator), we set batch size = 32 and
epoch = 100. Note that we use the same annotation (including
bounding boxes and segmentation masks) as Obj-GAN [17], thus
the comparison with Obj-GAN is fair.

4.2 Evaluation Metrics
We evaluate the image quality by commonly used Fréchet Inception
Distance (FID) [7] while test the consistency between generated
image and text description via R-precision [36]. As noticed by [17],
the IS can be saturated, even over-fitted and thus fails to evaluate the
semantic layout of the generated images. We thus propose a Patch
Inception Score (PIS). Specifically, rather than using the Inception
network, we use a DeepLab-V2 [1] model trained on MSCOCO to
ensure the alignment of classes during training and testing. The
DeepLab-V2 model generates the feature map X ∈ R𝐻×𝑊 ×𝐶 , where
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Table 1: Comparison against State-of-the-art Method. Meth-
ods marked with 0, 1, 2 respectively generate images using
the predicted boxes & predicted shapes, the ground-truth
boxes & predicted shapes, and the ground-truth boxes &
ground-truth shapes. ↑ (↓) means that the higher (lower)
value is better. The results of methods marked with † were
calculatedwith a pre-trainedmodel provided by the authors.

Methods PIS ↑ FID ↓ R -precision↑ #Parameters
StackGAN-V2 [38] – 81.59 – 466M
StackGAN [39] – 74.05 – 996M
HDGAN [40] – 71.27 – –
AttnGAN [36]† 41.28 ± 0.39 31.90 82.98 956M
DM-GAN [42] – 32.64 88.56 223M
OPGAN [8]† 43.71 ± 0.74 26.55 87.90 1019M
CPGAN† [19] 44.30 ± 0.74 53.84 93.59 318M
Obj-GAN [17]0 † 34.70 ± 0.38 32.04 91.05 –
Obj-GAN [17]1 † 37.23 ± 0.38 30.25 92.54 –
Obj-GAN [17]2 † 39.99 ± 0.44 25.01 93.39 –
R-GAN0 (Ours) 45.16 ± 0.34 24.60 94.08 171M
R-GAN1 (Ours) 47.39 ±0.57 22.64 94.67 –
R-GAN2 (Ours) 49.70± 0.65 17.57 95.25 –

Table 2: The results of human study.

Obj-GAN CPGAN R-GAN (Ours)
Choice(%) 19.56 26.11 54.33

Table 3: Performance of layout and shape.

Methods Accuracy(%) mIoU (%)
Obj-GAN 43.67 62.10

R-GAN (Ours) 48.99 67.92

Table 4: Effect of structural representation. ↑ (↓) means that
the higher (lower) value is better.

R-GAN (Ours) PIS↑ FID ↓ R -precision↑
w/o structural representation 40.06 ± 0.23 28.91 92.43
w structural representation 45.16 ± 0.34 24.60 94.08

each super-pixel x𝑖 𝑗 ∈ R𝐶 indicates a patch of image, which can be
regarded as a simple image with a single object. Here, 𝐶 denotes
the number of classes while 𝐻 and𝑊 are the height and width of
the feature map, respectively. Formally,

PIS(X) = exp
(

1
𝑁𝐻𝑊

𝑁∑
𝑘=1

𝐻∑
𝑖=1

𝑊∑
𝑗=1

KL
(
𝑝 (𝑦 |x(𝑘 )

𝑖 𝑗
) | |𝑝 (𝑦)

))
, (19)

where X = {X𝑘 }𝑁𝑘=1 is a set of feature maps (images), KL denotes
Kullback–Leibler divergence and 𝑁 is the number of feature maps.
To avoid the misleading from unsuitable marginal distribution 𝑝 (𝑦),
we simply set 𝑝 (𝑦) as a Uniform distribution with 𝐶 dimensions.

4.3 Quantitative Evaluation
Comparison against State-of-the-art Methods To prove the su-
periority of our method, we consider several state-of-the-art meth-
ods, such as OPGAN [8], Obj-GAN [17], CPGAN [19].

From Table 1, we can see compared to SoTA methods (e.g. ,
OPGAN and CPGAN), our model has only about 16 parameters of
OPGAN, 1

2 parameters of CPGAN. Though our R-GAN has the
minimum parameters, it achieves the best performance compared
to other state-of-the-art methods in all metrics. Especially compared

Table 5: Impact of different losses in shape generation.

L𝑔𝑙𝑜𝑏𝑎𝑙 L𝑜𝑏 𝑗𝑒𝑐𝑡 L𝑟𝑒𝑐 L𝑔𝑟𝑎𝑑 mIoU√
19.63√ √
50.24√ √ √
64.32√ √ √ √
67.92

Table 6: Influence of geometry-aware map when generating
images from ground-truth boxes and shapes.

R-GAN (Ours) PIS↑ FID↓
w/o geometry-aware map 46.08 ± 0.49 23.45
w geometry-aware map 49.70 ± 0.65 17.57

w/o	geometry-aware	map

w	geometry-aware	map

Figure 5: Visual comparison of the generated images with
and without geometry-aware map.

with Obj-GAN, which has a similar multi-step pipeline, our model
achieves a large improvement by 30.14% in PIS and 23.22% in FID
metircs.

We also randomly sampled 600 descriptions and corresponding
generated images from both R-GAN, Obj-GAN and CPGAN, to
ask human subjects to choose which one is more reasonable and
more relevant to the given text. Table 2 shows R-GAN achieves
the highest score of 54.33%, which outperforms both CP-GAN and
Obj-GAN with a large margin.
Comparison of Layout and Shape To measure the intermediate
results, i.e. , layouts and shapes, we compute the accuracy for the
predicted labels of generated bounding boxes (i.e. , object) within
layouts. We then adopt the widely-used mean Intersection-over-
Union (mIoU) [4] (predicted shape against ground truth) to evaluate
shape generator. From Table 3, compared to Obj-GAN, our method
achieves higher accuracy on both label accuracy and mIoU, which
shows the superiority of our layout and shape generator.

4.4 Ablation Study
In this section, we conduct several ablation studies in terms of 1)
our monolithic-structural text representation, 2) losses in shape
generation and 3) geometry-aware map in image generation.
Impact of Structural Representation To test the effect of struc-
tural representation in Section 3.1, we conduct an ablation study
to compare the results with or without it. Table 4 shows that the
model with structural representation performs better on all metrics
with large margins.
Impact of Losses in ShapeGeneration Table 5 shows both of the
global loss L𝑔𝑙𝑜𝑏𝑎𝑙 and object loss L𝑜𝑏 𝑗𝑒𝑐𝑡 are important, demon-
strating that the shape discriminator should be considered at both
global and object levels. We also find that the reconstruction loss
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Real	image										 AttnGAN Obj-GAN					 CPGAN		 R-GAN(Ours)

Two bowls of creamy soup and broccoli on a wood table.

Real	image										 AttnGAN Obj-GAN					 CPGAN		 R-GAN(Ours)

A very tall tower with a big pretty clock on it.

A two story boat sailing on a crystal blue body of water.

A desktop computer that is sitting on a desk. A large military plane parked in the landing area.

A couple of elephants standing next to each other.

Figure 6: Comparisons of generated images with other methods.

Real	image										ObjGAN GaGAN(Ours)

Three zebras eating hay at a wildlife 
habitat.

Real	image										ObjGAN GaGAN(Ours)

A bus driving past an intersection on a 
city street.

Figure 7: Comparisons between Obj-GAN and our method
in shape generation. Results are generated based on the
ground-truth box & predicted shape.

Real	image										 AttnGAN Obj-GAN					 CPGAN		 R-GAN(Ours)

Two workers are heading down the road on their horses. 

Figure 8: Challenging examples

L𝑟𝑒𝑐 further improves the performance, with a gain of 14.08%.
Adding the shape gradient-sensitive loss L𝑔𝑟𝑎𝑑 contributes to the
performance boost with 3.60%, shows the effect of sharping shape.
Impact of Geometry-aware Map From Table 6, we can see that
our method conditioned on geometry-aware map consistently out-
performs the counterpart without this map. Besides, as shown in
Figure 5, based on the geometry-aware map, the appearances of the
generated objects are more diverse even they belong to the same
category.
4.5 Qualitative Analysis
Figure 6 shows our generation results compared to other methods. It
is obvious that our method is able to generate more photo-realistic
and reasonable images.

In order to compare with Obj-GAN [17] that has a similar multi-
step pipeline, we also visualise the generated shapes compared to
the Obj-GAN in Figure 7. We can see that shapes from our R-GAN
are more natural and complete with sharper contours. It helps our
R-GAN generate more complete and recognisable images, while
images generated by Obj-GAN are often incomplete and broken.

Specifically, we compare our method with CPGAN, which has a
competitive performance on quantitative evaluation metrics. We
can see that images generated by CPGAN tend to have the pattern
which has a similar background with ground-truth images and
repeated objects. This pattern makes up a messy and unreasonable
image. On the contrary, R-GAN can generate images with a boat on
water rather than in the sky, a desktop computer on a desk rather
than a room filled with computer screens.

As shown Figure 8, in a very complicated scene, R-GAN is the
only one that can generate a complete and reasonable image which
contains all the semantic elements in the given description.

5 CONCLUSION
In this paper, we propose a Generative Adversarial Network called
R-GAN to synthesise reasonable context-rich images from complex
descriptions via a human-like drawing process, i.e. , from reason-
able text representation to reasonable layouts, then to reasonable
shapes and finally to reasonable images. Specifically, several innova-
tive modules such as the monolithic-structural text representation,
shape gradient-sensitive loss and multi-modal geometry-aware
spatially-adaptive generator are proposed.

Experimental results onMSCOCO dataset show the effectiveness
of R-GAN in both quantitative and qualitative metrics, which can
generate photo-realistic and reasonable images based on complex
descriptions.
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