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Relation Attention for Temporal Action Localization
Peihao Chen, Chuang Gan, Guangyao Shen, Wenbing Huang, Runhao Zeng, and Mingkui Tan

Abstract—Temporal action localization aims to accurately
localize and recognize all possible action instances from an
untrimmed video automatically. Most existing methods perform
this task by first generating a set of proposals and then
recognizing each independently. However, due to the complex
structures and large content variations in action instances,
recognizing them individually can be difficult. Fortunately, some
proposals often share information regarding one specific action.
Such information, which is ignored in existing methods, can
be used to boost recognition performance. In this paper, we
propose a novel mechanism, called relation attention, to exploit
informative relations among proposals based on their appearance
or optical flow features. Specifically, we propose a relation
attention module to enhance representation power by capturing
useful information from other proposals. This module does
not change the dimensions of the original input and output
and does not rely on any specific proposal generation methods
or feature extraction backbone networks. Experimental results
show that the proposed relation attention mechanism improves
performance significantly on both Thumos14 and ActivityNet1.3
datasets compared to existing architectures. For example, relying
on Structured Segment Networks (SSN), the proposed relation
attention module helps to increase the mAP from 41.4 to 43.7
on the Thumos14 dataset and outperforms the state-of-the-art
results.

Index Terms—temporal action localization, relation attention.

I. INTRODUCTION

IN the past few years, deep learning has been widely used to
analyze visual content [1]–[7], especially for action recog-

nition [8], [9]. This task assumes that background instances are
removed beforehand and mainly focus on classifying trimmed
video clips. However, in practice, it is time-consuming and
expensive to trim each video manually. Thus, it is desirable
to localize the position of all possible action instances from
untrimmed videos automatically and then recognize them.
This task, known as temporal action localization, has various
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Fig. 1. Two different methods of capturing context information in a video.
Top: For a proposal (green box), we extract features from the frames within
and around it, and then concatenate them as augmented features. Bottom:
We first extract features for all proposals and then put them into our relation
attention module. Output enhanced features can be regarded as the weighted
average of all input features based on the learned relations between proposals.

potential applications in content-based video searching [10],
temporal sentence localization [11] and monitoring suspicious
activities [12].

Temporal action localization is closely related to object
detection in the image domain [13]–[16] because both try
to find meaningful regions (2D bounding boxes in object
detection and 1D time intervals in temporal action localization)
and then recognize them. Thus, action localization can be
viewed as a 1D counterpart of object detection. Inspired by
the success of region-based paradigm established in R-CNN
[17], most temporal action localization algorithms involve
two stages: 1) generate proposals which are likely to contain
actions; and 2) perform classification and boundary regression
on each proposal individually. The second stage can be in-
spected as an action recognition task for each proposal, and the
common approach is to extract proposal features first and then
train a feature classifier with action label [18]. In this scene,
the quality of proposal features is critical. To exploit high-
quality features, several attempts, which extend the receptive
fields when extracting proposal features, have been proposed
[19]–[22]. These methods capture information from frames
around the proposals and thus take more information into
consideration, as shown on the top of Figure 1. However,
this type of method still suffers from two main issues: 1)
the range of sampling contextual information is restricted to a
local area, and thus global contextual information is neglected;
and 2) proposals are still recognized separately. The second
issue always leads to a decrease in performance because
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recognizing proposals individually can be difficult, due to
the complex structures and large content variations in action
instances. Fortunately, we observed that some proposals could
share essential or complementary information regarding one
specific action category. For example, both “ball serving” and
“tennis smash” action instances can be classified as the “tennis
swing” action class. Although these two kinds of instance have
their distinct characteristics, they also share essential common
features considering the “tennis swing” action. Considering
several instances simultaneously allows the network to learn
essential characteristics instead of overfitting the features of
distinct action instance. Another example is that the video
of “long jumping” usually consists of both background infor-
mation (e.g., sand pool) and actions (e.g., jumping, running).
Such information can be complementary and provides clues
for temporal reasoning, which benefits the understanding of
actions. This relative and helpful information may spread over
the video. Therefore, the range of searching for context infor-
mation should not be restricted locally. Inspired by [23], which
leveraged relations between the detected semantic regions for
scene parsing, we hope to exploit relations between action
instances for temporal action localization task.

To model a relation between proposals, we propose a
relation attention module for temporal action localization. As
illustrated in the bottom of Figure 1, our relation attention
module takes a set of proposal features as an input and
outputs the enhanced representations with relation informa-
tion for each proposal. These proposals can be adjacent or
distant from each other. Specifically, our proposed module
first projects all proposal features into a subspace, and then
captures their relations via a pair-wise relation function. We
then fuse information from all proposals to construct the
enhanced features according to the learned relations. We call it
relation attention mechanism, which in spirit is similar to the
self-attention mechanism [24]. Our relation attention module
is flexible and can be embedded in most of the existing
networks because of the following properties: 1) no extra
supervision is required because we do not need to define
any constraint for what relations should be learned; 2) the
relation attention module is designed in-place to keep the
dimensions of input and output the same; and 3) the network
with the relation attention module can be trained in an end-
to-end manner. In this paper, we evaluate the effectiveness
and generality of the proposed relation attention module on
several existing temporal action localization methods. Using
Structured Segment Networks [20], we achieve the state-of-
the-art results on the Thumos14 dataset (43.7) and show
significant improvements on the ActivityNet1.3 dataset.

The main contributions of this paper are as follows.

• We propose a relation attention module that effectively
exploits the relation between video proposals and that can
be embedded into current action localization algorithms
with few modifications.

• We evaluate the effectiveness of adding relation infor-
mation between proposals and show significant improve-
ments compared to baselines on the Thumos14 and
ActivityNet1.3 datasets for temporal action localization.

II. RELATED WORK

A. Temporal Action Localization
Early works first generate proposals by sliding windows and

then classify them using hand-crafted features [25]. Recently,
with the development of deep learning [26]–[29] in image and
video analysis, a great progress has been achieved in temporal
action localization [30]–[37]. Some approaches generate a
series of frame-level or clip-level action scores throughout
an video and then collect temporal regions with continuous
high scores as predicted results [30]–[32]. They suffer using
long-range temporal information to predict the score for each
unit. Recently, with the popularity of region-based detectors in
the image domain [17], many approaches for temporal action
localization leverage the “proposal+classification” paradigm,
which first generates a set of proposals with potential action
instances, and then recognizes them [33]–[36]. However, these
methods rely on the quality of the generated proposals as well
as the capability of classifiers. These methods also cannot be
trained end-to-end to optimize proposals generation network
and classification network simultaneously. Inspired by the
success of Faster RCNN [38], some approaches tackle this
issue by merging proposal and classification networks into
an end-to-end trainable network [21], [22], [39]–[41]. Our
proposed relation attention module is easy to embed in the
architecture with proposals recognition stage, capturing the
relation between proposals to assist action recognition.

B. Exploiting Contextual Information in Videos
The quality of proposal features is critical for action

recognition and location regression. Many approaches attend
to exploit contextual information to build a stronger video
representation. [19], [20] extend beyond the start and end
points of proposals by half of the proposals duration for
proposal classification and location regression. [21] applies
context feature to proposal generation stage. [22] uses context
information for proposals ranking. [42] makes use of context
information through constructing a feature bank, which is a
collection of the features from each time step in the video. [43]
uses predicted future information for online action detection.
Although these approaches construct more powerful repre-
sentation by exploiting contextual information, they ignore
relation information between proposals, which is critical for
temporal action localization task.

C. Object Relation in Image
Contextual information is also of interest in object detection.

Before deep learning was commonly used, many methods
leveraged the relation between objects in the post-processing
stage to rescore detected objects [44], [45]. Some approaches
also used more specific features, such as size and location, to
capture object relations [45], [46]. When using deep learning,
some methods model contextual information or object rela-
tions through sequential reasoning [47]–[49]. These methods
are compatible to current state-of-the-art networks, although
they are not designed in-place. The relation network in [50]
designs an in-place module to explore object relations. How-
ever, in the video understanding domain, few methods explore
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the effectiveness of leveraging relation between proposals. To
the best of our knowledge, we are the first to verify the
effectiveness of using proposal relation for temporal action
localization task.

D. Attention Model

An attention mechanism has been leveraged in various tasks
[24], [51]–[56]. [51] uses an attention model to aggregate a
feature map from different scale inputs, improving semantic
segmentation performance with small objects. Squeeze-and-
Excitation Networks [52] fuse channel-wise features for image
classification and object detection using an attention model.
[24] uses a self-attention mechanism for language translation,
and [53] proposes a non-local block to capture pixel-wise con-
textual information. DANet [54] makes use of both channel-
wise and spatial attention to explore relation attention for scene
segmentation. PSA [55] simultaneously considers semantic
and location information between two pixels to aggregate
contextual information. Our relation attention module learns
a proposal-wise attention map to capture relative information
for temporal action localization task.

III. PROPOSED METHOD

A. Motivations

Most methods of temporal action localization involve two
stages: generating proposals and recognizing them. As dis-
cussed in INTRODUCTION, the relation between proposals
is critical for recognition. However, most existing methods
process proposals individually, neglecting relation information.

Therefore, we aim to design a module to capture relations
among proposals, allowing the network to seek information
from other proposals automatically and boost classification
performance. We design our module with reference to the
self-attention mechanism based on its success in solving
dependency between words in machine translation [24]. We
call the proposed module as relation attention module (RAM).

B. Relation Attention Module

We now illustrate the relation attention module more for-
mally. Let P = {pk = (psk, p

e
k)}Kk=1 denote the proposal

subset of one video, where K is the number of proposals,
psk and pek are starting and ending points of the kth proposal
respectively. For the kth proposal, we obtain the corresponding
features fk through a feature extractor and thus obtain the
feature set F = {fk}Kk=1.

Given the input feature set F , the output features of the
relation attention module with respect to the kth input features
is computed as:

fR
k =

K∑
j=1

r(fk,fj)g(fj). (1)

The function r(·) takes a pair of features as an input and out-
puts a scalar, representing the pair-wise relation weight. The
function g(·) transforms the input features to the embedding
subspace, and j is the index enumerating all input features.
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Fig. 2. The computation of relation attention module in Sim-Cos form with 64
dimension embedding. The number of features in F is K, and the dimension
is 1024. WK , WQ and WV transform the features into another subspace
and are implemented as a 1× 1 convolution. || · || calculates the l2 norm of
each row in the matrix. The softmax operation is performed on each row. The
Sim-Dot and Sim-Dot Scale instantiations can be performed by changing the
Scale operation.

The output features for the kth proposal can be viewed as the
weighted average of all input proposal features in the subspace.

Following non-local neural network [53], function g(·) is
simply designed as g(fj) = WV fj , where WV works as
a linear embedding matrix, being implemented as a 1 × 1
convolution. We keep the embedding dimension the same as
the input features. The pair-wise relation function r(·) is the
key component of our proposed relation attention module and
will be discussed next.

C. Pair-wise Relation Function

In this subsection, we explore several choices of the relation
function and provide detailed descriptions.

Similarity. Inspired by “scaled dot-product attention” in
[24], we use the similarity between two features followed by
a softmax operation to exploit their relations. Specifically, we
have:

r(fk,fj) =
eS(fk,fj)∑K
t=1 e

S(fk,ft)
, (2)

where S(·) measures the similarity. Here, we formulate the
function S(·) as:

S(fk,fj) = C ·
[
(WQfk)T · (WKfj)

]
, (3)

where C is the scale factor; WQ and WK are two matrices
transforming input features into two subspace with dimension
d. In this paper, we choose multiple solutions for selecting
C and explore their differences empirically. 1) When C =
[||WQfk|| · ||WKfj ||]−1, S is the cosine similarity (Sim-Cos).
2) If C is set to 1, then S is the general dot product of the
two embedding feature vectors (Sim-Dot). And Equation (1)
becomes the “embedded Gaussian” form in non-local neural
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Fig. 3. The network architecture of SSN with our relation attention module for temporal action localization. For the relation attention module, we only show
the process of obtaining the first enhanced features fR1 . The process of STPP, completeness classifier and location regressor are not shown.

networks. 3) When C = 1√
d

, the similarity function is the
same as the self-attention mechanism in [24] (Sim-Dot Scale).

Relation-FC. In addition to similarity, we can also use
a fully-connected (fc) layer to instantiate function S(·), and
we call it Relation-FC. Specifically, two input features are
concatenated in the subspace, followed by a fc layer with a
scalar output together with the ReLU activation function [57].
Function S(·) is defined as:

S(WQfk,WKfj) = ReLU(wS · [WQfk,WKfj]), (4)

where [·, ·] denotes the concatenation operation. Here, the
relations between input features are modeled by a learnable
vector wS .

All operations of the module can be implemented using
basic operators. Its computation flow chart is shown in Figure
2. Next, we will illustrate how to use the relation attention
module for temporal action localization.

D. Temporal Action Localization with RAM

Our module is designed in-place, which makes it flexible
and easily integrated into most of the existing methods with
few modifications. Based on the two-stage temporal action
localization paradigm, we embed the proposed relation atten-
tion module into the Structured Segment Network (SSN) [20],
a popular method for temporal action localization with good
performance. Figure 3 shows the network architecture of SSN
with the relation attention module. We first introduce the SSN
pipeline and then describe how to embed the relation attention
module into it.

In the first stage (proposal generation), the SSN generates a
proposal set P = {pq}Qq=1 by using the temporal actionness
grouping (TAG) algorithm, which finds continuous temporal
regions with high actionness scores to serve as proposals,
where Q is the number of generated proposals. Several frames
are selected uniformly from each proposal to construct activity
feature set F through a feature extractor. The SSN also
doubles the span of each proposal to involve the contextual
information, leading to augmented proposal set P ′, and uses
Structured Temporal Pyramid Pooling (STPP) to build the
augmented feature set F ′. After extracting features, an activity
classifier predicts the action category of each proposal using
the activity features. A location regressor and a completeness
classifier then take the augmented features as inputs, regress
the relative changes from the proposal to the target action
instance, and judge whether the proposal contains a complete
action instance. Both the classifier and regressor are fully-
connected layers. The activity and completeness classifiers
are trained with cross-entropy loss, and the regression term
is trained with L1 loss.

We do not change the SSN pipeline but embed the relation
attention module before the activity classifier to explore the re-
lation between activity features. Specifically, in each iteration,
we first randomly select K corresponding features from F and
F ′ to build two subsets F̄ = {f̄k}Kk=1 and F̄ ′. The relation
attention module takes F̄ as input and outputs a collection
of enhanced features FR = {fR

k }Kk=1 using Equation (1).
During training, considering the limitation of GPU memory,
we select 8 proposals for each video at one iteration. In the
testing phase, a variable number of proposals are selected
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and their performances are discussed in the EXPERIMENTS
section. Training details are shown in Algorithm 1.

Figure 3 does not show the process of STPP, the complete-
ness classifier and location regressor because they are not nec-
essary for the common two-stage temporal action localization
paradigm. Embedding the relation attention module does not
change the activity classifier but enhances its input features
with information from various proposals. Thus, the relation
attention module could also be embedded in any two-stage
frameworks with proposals and classifiers.

E. Efficient Inference with RAM

In [20], the authors use a technique to reduce the inference
time in the SSN, avoiding the redundant computations when
extracting features for the same frames when inferring over-
lapped proposals. With this technique, the authors only need to
extract features and calculate the classification and regression
outputs for all sampled frames first, and then pool over these
outputs to get the results for each proposal. We argue that
the proposed relation attention module is compatible with this
technique, and adding RAM does not add extra computational
loads. The core operation of the relation attention module is
described in Equation (1). During testing, similar to SSN, we
first extract the feature set V = {v}Tt=1 for T uniformly
sampled frames across the whole video. In Equation (1), the
proposal features f are obtained by mean pooling over several
frame features within proposal region r and can be represented
as Et∼r[vt]. Function g(f) indicates linear embedding of f .
Assuming that We is a linear embedding matrix, we have:

g(f) = We · f = We · Et∼r[vt] = Et∼r[We · vt]. (5)

Equation (5) suggests that the proposal embedding features
can be built by mean pooling over embedded frame features
within the proposal region r. For the overlapped frames from
two proposals, we do not need to extract these embedded frame
features repeatedly but just pool over the extracted embedded
frame features to build the embedded proposal features. With
embedded features for each proposal, we can easily obtain the
relation scores through the pair-wise relation function and then
construct the enhanced features fR through weighted average
pooling. The final classification predictions are obtained from
a fc layer upon fR. Empirically, adding RAM only incurs
additional 0.06 seconds in inference time per video on average
(from 0.78 to 0.84 seconds), which is negligible.

IV. EXPERIMENTS

In this section, we first describe datasets and evaluation met-
rics. Then, we embed RAM into several existing architectures
to evaluate its effectiveness and generality, followed by an
ablation study on RAM. We also evaluate the compatibility of
RAM and visualize the results.

A. Datasets

The Thumos14 [58] dataset contains 101 categories video
and is composed of four parts: training, validation, testing and
a background set. Each set includes 13320, 1010, 1574 and

Algorithm 1 Training details of SSN with RAM
Input: Training video set

1: generate proposal sets P and P ′ using TAG
2: extract feature sets F and F ′

3: while not converges do
4: select K features randomly to build F̄ and F̄ ′

5: for f̄k ∈ F̄ do
6: construct fR

k using Equation (1)
7: end for
8: predict action category from FR

9: predict completeness and boundary regression from F̄ ′

10: end while
Output: Trained model

2500 videos, respectively. Following the common setting in
[58], we use 200 videos in the validation set for training, and
213 videos in the testing set for evaluation. The temporal ac-
tion localization task of the THUMOS14 dataset is challenging
because the video contains a large proportion of background
information, and each video contains more than one action
instance from one or multiple classes.

The ActivityNet [59] dataset is a standard benchmark for
action recognition and localization tasks. We evaluate our
method on the ActivityNet release 1.3, which has 200 activity
classes and contains approximately 10,000 videos for training,
5,000 videos for validation, and 5,000 videos for testing. On
average, each video contains 1.65 action instances from one or
multiple classes. Per a standard practice, we train our model
on training videos and test on validation videos.

B. Implementation Details

Training details. We train the SSN architecture with RAM
in an end-to-end manner using 4 Nvidia TITAN X GPUs.
The total training epochs are set to 450 and 70 for Thumos14
and ActivetyNet datasets, respectively. The model is updated
by SGD with batch size 128 and momentum 0.9. We set
the learning rate to 0.001 for both RGB and optical flow
networks. By default, RAM is instantiated in Sim-Cos manner.
The dimension d in the pair-wise relation function is set to 64.
The number of proposals K selected for RAM is set to 8 in the
training phase and set to 40% of the total number of proposals
for each video in the testing phase.

Evaluation metrics. For quantitative evaluation, we use
the mean Average Precision (mAP) as the comparison metric.
Following the conventional evaluation set-ups, we report the
mAP at different IoU thresholds. A prediction proposal is
correct if it selects the same category as ground-truth and its
temporal IoU with this ground-truth instance is larger than
the IoU threshold. On the Thumos14 dataset, we choose IoU
thresholds from [0.1, 0.2, 0.3, 0.4, 0.5], and mAP at 0.5 IoU
is used for measuring the performance. On the ActivityNet1.3
dataset, the average mAP at the IoU thresholds [0.5:0.05:0.95]
is used for evaluation.
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TABLE I
IMPROVEMENT AFTER ADDING RAM UPON SEVERAL TEMPORAL ACTION

LOCALIZATION ARCHITECTURES ON THUMOS14 TESTING SET. THE
VALUE IN ( ) IS RELATIVE IMPROVEMENT.

Baseline mAP@IoU=0.5(%)
Baseline Baseline+RAM Gain

SSN(RGB) 18.28 19.95 +1.67 (9.14%)
SSN(Flow) 23.30 28.34 +5.04 (21.63%)

SSN(RGB+Flow) 29.80 31.92 +2.12 (7.11%)
CBR 31.00 32.03 +1.03 (3.32%)

R-C3D 28.90 31.86 +2.96 (10.24%)

TABLE II
IMPROVEMENT AFTER ADDING RAM IN DIFFERENT PROPOSAL SETS ON

RGB+FLOW SSN MODEL. WE USE IMAGENET PRE-TRAINED
INCEPTION-V3 ARCHITECTURE AS BACKBONE NETWORK.

mAP@IoU=0.5(%)
SSN SSN+RAM Gain

TAG 29.80 31.92 +2.12 (7.11%)
BSN 32.28 36.32 +4.04 (12.52%)
SW 25.79 29.10 +3.31 (12.83%)

C. Effectiveness and Generality of RAM

To evaluate the effectiveness and generality of RAM, we
embed it into the SSN, and other two temporal action local-
ization methods (CBR [39] and R-C3D [40]). To determine
whether RAM is robust to the quality of proposals and
features, we also experiment with various proposal sets and
different feature extractor backbone networks using the SSN
architecture. We use the mAP at IoU 0.5 with the Thumos14
dataset as an evaluation metric in this subsection.

During training, K is set to 8 for the SSN and CBR, and
128 for R-C3D, considering the GPU memory limitation. In
the testing, K is maintained at 40% of the total number of
proposals for each video. A more detailed ablation study of
RAM settings is shown in the next subsection.

Performance Beyond SSN. In [20], the SSN model is
trained and tested on TAG proposals using ImageNet pre-
trained Inception-v3 networks [60]. We follow this method to
create fair comparisons and report results on both RGB and
flow modalities in Table I. With the help of RAM, performance
is boosted from 29.80 to 31.92. The gain in Flow is much
larger than that in RGB, highlighting the advantages of RAM
when processing the temporal information.

Performance Beyond CBR. The CBR model first con-
structs proposal features and then uses two fc layers to classify
a proposal and regress its boundary in a cascaded manner.
Before the final classification and coordinate regression layer
in the detection stage, we use RAM to model relations among
all input proposal features. Following [39], we use two-stream
features and unit-level offsets. The results in Table I show that
adding RAM yields +1.03 mAP improvement.

Performance Beyond R-C3D. The R-C3D model contains
a proposal subnet that generates proposals and a classification
subnet that predicts activity labels and regresses boundary.
We embed RAM into the classification subnet and capture
relations to enhance its features before the last activity classi-
fication fc layer. We follow all settings used in [40]. The results

TABLE III
IMPROVEMENT AFTER ADDING RAM ON DIFFERENT BACKBONE

NETWORKS ON RGB+FLOW SSN MODEL. “IN” AND “KIN”MEAN MODEL
PRE-TRAINED ON IMAGENET AND KINETICS DATASETS RESPECTIVELY.

WE USE TAG PROPOSAL SET FOR TRAINING AND TESTING.

mAP@IoU=0.5(%)
SSN SSN+RAM Gain

BN-Inception (IN) 27.06 30.23 +3.17 (11.71%)
Inception-v3 (IN) 29.80 31.92 +2.12 (7.11%)

BN-Inception (KIN) 31.58 34.67 +3.09 (9.78%)
Inception-v3 (KIN) 33.15 35.33 +2.18 (6.57%)

TABLE IV
IMPROVEMENT AFTER ADDING RAM INSTANTIATED IN DIFFERENT WAYS
ON RGB SSN MODEL. WE USE KINETICS PRE-TRAINED BN-INCEPTION

ARCHITECTURE AS BACKBONE NETWORK AND TAG PROPOSAL SET.

Model mAP@IoU=0.5(%) Gain
SSN baseline 22.07 -

Sim-Cos 24.16 +2.09 (9.47%)
Sim-Dot 23.04 +0.97 (4.3%)

Sim-Dot Scale 23.42 +1.35 (6.12%)
Relation-FC 23.94 +1.87 (8.47%)

in Table I show that RAM yields a +2.96 mAP improvement.
Different types of proposals. Different algorithms generate

proposal sets with different qualities and distributions. Table
II shows performances using three different proposal sets,
including TAG, BSN and SW. BSN indicates the proposal
set generated by a boundary sensitive network [61], and we
choose all generated proposals for training and the top 200
proposals with the highest scores from each video for testing,
following the settings used in [61]. We also train our model
using proposal set generated by the temporal sliding windows
(SW) algorithm, where the length of sliding windows varies
from 16, 32, 64, 128, 256, 512 frames with 75% overlap.

The results are shown in Table II. RAM yields consistent
gains for all three types of proposals, indicating that RAM
can capture useful relation information from proposal sets in
various qualities. All proposal sets contain a certain proportion
of background proposal (62.45%, 26.27% and 20.44% for
SW, TAG and BSN respectively). We observe that background
proposals are also used by RAM to enhance action proposal
features. More detailed discussions of this topic are shown in
Section IV-G.

Different types of backbone networks. The feature ex-
tractor with different backbone networks generates proposal
features in different qualities. Table III shows the results on
the BN-Inception [62] and Inception-v3 networks, both of
which are pre-trained on the ImageNet or Kinetics datasets.
Our module boosts performance consistently, meaning that our
module does not rely on the proposal features from a specific
network architecture. Without RAM, the Inception-v3 network
outperforms the BN-Inception network by approximately 2%
consistently (29.80 vs. 27.06 and 33.15 vs. 31.58) because of
its deeper architecture. However, with RAM, the BN-Inception
network outperforms the raw Inception-v3 network (30.23 vs.
29.80 and 34.67 vs. 33.15) by considering relation information.
D. Ablation Study

We first evaluate the performance of RAM with different
pair-wise relation function, followed by an exploration of how
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Fig. 4. Performance on SSN model with different percentages of selected
proposals, measured by mAP@IoU=0.5. We use Kinetics pre-trained BN-
Inception architecture as backbone network and TAG proposal set.

TABLE V
COMPARISON OF THE NUMBER OF LEARNABLE PARAMETERS AND THE

PERFORMANCE GAINS ON RGB SSN MODEL. WE USE KINETICS
PRE-TRAINED BN-INCEPTION ARCHITECTURE AS BACKBONE NETWORK

AND TAG PROPOSAL SET.

Method Parameters mAP@IoU=0.5(%)
SSN 10.48 M 22.07

SSN+fc 11.53 M 22.32 (+0.25)
SSN+2fc 12.58 M 22.62 (+0.55)

SSN+RAM 11.66 M 24.75 (+2.68)

the number of related proposals affects performance. Then, we
evaluate the RAM on both classification and regression stage,
together with the effect of the incorporated parameters and the
comparison between RAM and non-local block. After that, we
explore the improvement in classification accuracy.

All ablation studies are implemented with the SSN structure
using a TAG proposal set and a Kinetics pre-trained BN-
Inception backbone network for relatively light training bur-
den. We train the RGB model and report the mAP at IoU 0.5
on Thumos14 dataset for evaluation.

Choice of Pair-wise Relation Function. We investigate the
effects of different pair-wise relation functions in our method.
We use all proposals to calculate relations. The results are
shown in Table IV. Considerable improvements are shown in
all cases, varying from 0.97 to 2.09. Specifically, Sim-Dot and
Sim-Dot Scale gain the smallest improvements despite they
sharing similar forms with non-local operation [53] and self-
attention [24]. Among all candidates, Sim-Cos exhibits the
best performance gain because the scale factor of Sim-Cos
scales the output of relation function within -1 to 1, which
provides better normalization. Thus, in the following ablation
studies, we choose Sim-Cos as the pair-wise relation function
by default.

Modeling Relation between Different Numbers of Pro-
posals. As described above, our module can accept an arbitrary
number of proposals as inputs. During training, following the
settings in SSN, we choose 8 proposals from each video
to fit available GPU memory and thus, only exploit the
relations between these 8 proposals. In testing, since more
proposals could be considered, we conduct experiments to
explore performance versus the number of proposals.

Figure 4 shows how performances varies with different
percentages of selected proposals per video. For the RGB
model, the mAP first increases as more proposals are used
to calculate relations, indicating that other proposals provide
abundant information to help understand actions. Performance

TABLE F
PERFORMANCE OF APPLYING RAM TO CLASSIFICATION (CLS.) AND
REGRESSION (REG.) STAGES IN SSN STRUCTURE. WE USE KINETICS

PRE-TRAINED BN-INCEPTION ARCHITECTURE AS BACKBONE NETWORK
AND TAG PROPOSAL SET.

Method mAP@IoU=0.5 Gain
SSN 22.07 -

SSN+RAM (Cls.) 24.75 +2.68 (12.14%)
SSN+RAM (Reg.) 23.32 +1.25 (5.66%)

SSN+RAM (Cls.+Reg.) 25.46 +3.39 (15.36%)

TABLE VII
COMPARISON WITH STATE-OF-THE-ART METHODS ON THUMOS14

DATASET. “-” INDICATES THE RESULT IS NOT REPORTED IN THE PAPER.

Method mAP@IoU(%)
0.1 0.2 0.3 0.4 0.5

Shou et al. [36] - - 40.1 29.4 23.3
Yuan et al. [31] 51.0 45.2 36.5 27.8 17.8
Buch et al. [63] - - 45.7 - 29.2
Gao et al. [39] 60.1 56.7 50.1 41.3 31.0
Hou et al. [64] 51.3 - 43.7 - 22.0
Dai et al. [22] - - - 33.3 25.6
Gao et al. [21] 54.0 50.9 44.1 34.9 25.6
Xu et al. [40] 54.5 51.5 44.8 35.6 28.9

Chao et al. [19] 59.8 57.1 53.2 48.5 42.8
SSN M 62.54 60.46 56.93 51.11 41.36

SSN M+RAM (ours) 65.42 63.08 58.83 52.66 43.67

peaks when 40% of proposals are considered. After that, the
mAP decreases as more proposals are considered, perhaps
due to the incorporation of irrelevant information from some
proposals. Similar results are observed in the Flow model.
The results suggest that selecting 40% of proposals achieves
a balance between the performance and the computation cost,
and we follow this setting in the following experiments.

RAM for Proposal Regression. In order to evaluate the
benefits of RAM for proposal regression, we incorporate the
RAM before location regressor of the SSN architecture. In
Table F, applying the RAM to regression stage results in 1.25
mAP gain. When the RAM is applied to both classification and
regression stages, the performance gain is more significant,
booting from 22.07 to 25.46. This demonstrates that the
relationships between proposals captured by the RAM are
beneficial to recognizing activities as well as to locating
actions more precisely. In this paper, we only consider the
influences from RAM on the classification stage because such
stage is necessary for two-stage temporal action localization
paradigm while the regression stage is not [33].

Extra Learnable Parameters. To determine whether im-
provement comes from the additional learnable parameters
or from the incorporation of RAM, we build a deeper SSN
baseline by replacing RAM with a fc layer. Specifically,
before being fed into the activity classifier, each proposal
activity feature undergoes one or two fc layers independently.
These fc layers incorporate more learnable parameters but
cannot capture relations between proposals. Table V shows the
number of parameters in the SSN baseline and several variants
with their performance. We use Sim-Cos instantiated RAM
with 40% of total proposals for testing. RAM introduces 1.18
M more parameters into the SSN baseline while yielding more
than a 12% relative improvement in performance. Conversely,
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TABLE VIII
IMPROVEMENT AFTER ADDING RAM ON ACTIVITYNET1.3 DATASET.

Proposal Method mAP@IoU
0.5 0.75 0.95 Average

TAG
SSN M 33.55 19.22 1.64 19.46
SSN M+RAM 35.14 20.35 2.15 20.68
Gain +1.59 +1.13 +0.51 +1.22

BSN
SSN M 33.80 21.52 2.50 20.91
SSN M+RAM 36.99 23.10 3.34 23.03
Gain +3.19 +1.58 +0.84 +2.21

Proposals with Top-3 Attention WeightsProposals to be Recognized

半页

Fig. 5. Visualization of RAM. We visualize the testing results of Sim-Cos
case in Table IV. Each proposal is represented by two uniformly selected
frames. Proposals showed on the left of the dashed line are to be recognized
and on the right side are the related proposals with top-3 scores. The red and
green boxes represent action and background proposals respectively.

the “SSN+2fc” variant contains more parameters compared
to the RAM variant but yields limited improvement. These
comparisons indicate that the improvement due to RAM may
not be attributed to the increased number of parameters only.

RAM vs. Non-local Block. RAM is similar to the self-
attention method [24] for machine translation, where a specific
output position consists of information from all positions of
the input signal, while we use it for video understanding. The
non-local neural network is also related to self-attention and is
applicable to other domains in addition to machine translation.
However, it models the relations between pixels of images or
videos and thus captures the low-level features, which is useful
for action classification. RAM instead focuses on the relations
between high-level features (i.e., proposal-level), which yields
more semantic information.

To exploit the effectiveness of the non-local block on
temporal action localization, we explicitly use it to capture
pixel-level relations to enhance proposal features. Specifically,
we use the Inception-v3 network as a feature extractor and
add a non-local block after the “inception 4e” layer to capture
relation information between different pixels. All other settings
remain the same as the SSN. The experimental results show
that, instead of increasing the performance, the mAP decreases
from 22.07 to 21.03 and highlight the necessity of RAM. To
the best of our knowledge, we are the first to leverage proposal
relation for temporal action localization.

Importance of relationship information. In RAM, we
enhance the proposal features through weighted averaging the
randomly selected K proposals. The relation weight for each
proposal is measured by a pair-wise function. We construct a
simple baseline that assigns the same weight for each of K
proposals. In this way, the mAP slightly increases from 22.07
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Fig. 6. Qualitative temporal action localization results on Thumos14 and
ActivityNet1.3 datasets.

to 22.47, which is significantly worse than the RAM (24.75).
This is not surprising because although the context information
from other proposals may be beneficial to recognizing actions,
the relation weight for each proposal should be varied. The
model should focus more on the relative content while the
irrelevant background is supposed to have a small weight.

To calculate the weight for each proposal, one possible way
is to concatenate all K proposal features and calculate K
relation weights with a fully-connected (fc) layer. We construct
another baseline, where we first transform K selected features
into an embedding space with 512 dimensions via a learnable
linear projection. Then, the concatenation of K embedded
features undergoes a fc layer and outputs K relation weights.
Such fc module incorporates a similar number of learnable
parameters compared to RAM, while the performance gain
is markedly lower than RAM (+0.46 vs. +2.68). The main
difference between such fc module and our Relation-FC
RAM is the capture of pair-wise relation weights. The results
demonstrate that our attention relation module benefits from
the design of the pair-wise relation function. Our module can
also be adapted to different inputs using an arbitrary number
of proposals, while the fc module requires a fixed number of
proposals as inputs.

Improvement on Recognition. As described in the IN-
TRODUCTION section, the second stage of the two-stage
temporal action localization paradigm can be regarded as
action recognition, which classifies the action proposals to
their own classes and recognizes inaccurate proposals as back-
ground. RAM can construct enhanced features for recognition
by capturing relation information from other proposals. We
thus conduct experiments to evaluate the effectiveness of our
proposed module at this process.
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Specifically, we calculate the recognition accuracy of all
TAG proposals. For the action proposals whose IoU with
action instance is nonzero, we set the class of action instance
with largest IoU as a target; for the other proposals, we expect
the model to recognize them as background. Based on these
settings, adding RAM increases recognition accuracy from
64.6% to 77.7%, demonstrating that the relative information
captured by RAM is useful during recognition, which is
critical to temporal action localization.

E. Comparisons with Other Methods

Current temporal action localization methods use certain
techniques to achieve high performance. For example, TAL-
Net in [19] uses “Inflated 3D ConvNet” [65] (I3D) features
to boost performance. The effectiveness of the BSN proposal
set for temporal action localization is also evaluated in [61].
We tend to evaluate the compatibility of RAM and these
techniques. Thus, we modify the raw SSN by combining these
two techniques with RAM. We denote the SSN using I3D
features and BSN proposal set as modified SSN (SSN M).

As shown in Table VII, the modified SSN boosts the
performance of raw SSN and yields competitive results to [19]
(41.36 vs. 42.8) in terms of mAP at IoU 0.5. Adding RAM into
the SSN M method further increases performance (from 41.36
to 43.67). With RAM, the SSN M method outperforms all
methods at all IoU thresholds, demonstrating that the proposed
module is compatible with these techniques and can help the
SSN achieve high performance.

F. Experiments on the ActivityNet Dataset

In addition to the Thumos14 dataset, we conduct experi-
ments on the largest temporal action localization dataset, the
ActivityNet1.3 dataset, to evaluate the generality of RAM. We
use the modified SSN described above and evaluate both TAG
and BSN proposals. As shown in Table VIII, adding RAM
yields improvements in two proposal settings under all IoU
thresholds and average mAP.

G. Visualization

We visualize the proposals with high attention weights in
Figure 5. There are three proposals to be recognized, including
two action proposals (top two on the left) and one background
proposal (bottom one on the left). We show the proposals with
the top-3 highest attention weights on the right side of the
dashed line. We find that RAM tends to choose information
from other action proposals to recognize action proposals. This
is intuitive because different action instances belonging to the
same class share similar characteristics. For the background
proposals, our module learns to select other background pro-
posals. Except for these intuitive findings, we also find that
although the third highest related proposal in the first row only
contains the background information (e.g., the athletic field)
related to the action of “high jumping”, it still contributes
to the recognition of that class. This interesting phenomenon
indicates that our relation module can capture both actions
and background information to enhance features. Additionally,

in the third row, we note that the second related proposal
spans a long duration, covering several discontinuous action
instances, which is also chosen to be auxiliary information for
recognition of background.

We also visualize qualitative localization results in Figure
6. The first two examples are from the Thumos14 dataset,
and the last two are from the ActivityNet1.3 dataset. We find
that with RAM, the model can classify action instances more
accurately (e.g., example 2) and localize instance boundaries
more precisely (e.g., example 4). Besides, the visual charac-
teristics of action and background are similar across time in
example 1. The model with RAM can localize the complete
action instance, while the baseline fails.

V. CONCLUSIONS

In this paper, we proposed a simple relation attention
mechanism to capture shared information among proposals
to improve the temporal action localization performance. The
proposed relation attention module can be embedded in most
two-stage architectures with few modifications. We conducted
extensive experiments to evaluate its effectiveness and gen-
erality. In the future, one possible modification is allowing
the network to learn specific relation information based on
different tasks.
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