
Structured Binary Neural Networks for Accurate Image

Classification and Semantic Segmentation

Bohan Zhuang, Chunhua Shen, Mingkui Tan, Lingqiao Liu, and Ian Reid

March 4, 2021

Abstract

In this paper, we propose to train convolutional neu-
ral networks (CNNs) with both binarized weights and
activations, leading to quantized models specifically
for mobile devices with limited power capacity and
computation resources. Previous works on quantiz-
ing CNNs seek to approximate the floating-point in-
formation using a set of discrete values, which we call
value approximation, but typically assume the same
architecture as the full-precision networks.

In this paper, however, we take a novel “structure
approximation” view for quantization— it is very
likely that a different architecture may be better for
best performance. In particular, we propose a “net-
work decomposition” strategy, named Group-Net,
in which we divide the network into groups. In this
way, each full-precision group can be effectively re-
constructed by aggregating a set of homogeneous bi-
nary branches. In addition, we learn effective connec-
tions among groups to improve the representational
capability. Moreover, the proposed Group-Net shows
strong generalization to other tasks. For instance, we
extend Group-Net for highly accurate semantic seg-
mentation by embedding rich context into the binary
structure. Experiments on both classification and se-
mantic segmentation tasks demonstrate the superior
performance of the proposed methods over various
popular architectures. In particular, we outperform
the previous best binary neural networks in terms of
accuracy and major computation savings.

1 Introduction

Designing deeper and wider convolutional neural net-
works has led to significant breakthroughs in many
machine learning tasks, such as image classifica-
tion [18, 28], object detection [41,42] and object seg-
mentation [6, 35]. However, accurate deep models
often require billions of FLOPs, which makes it in-
feasible for deep models to run many real-time ap-
plications on resource constrained mobile platforms.
To solve this problem, many existing works focus on
network pruning [16,19], low-bit quantization [26,57]
and/or efficient architecture design [8, 22]. Among
them, the quantization approaches represent weights
and activations with low bitwidth fixed-point inte-
gers, and thus the dot product can be computed
by several XNOR-popcount bitwise operations. The
XNOR of two bits requires only a single logic gate in-
stead of using hundreds units for floating point mul-
tiplication [10,14]. Binarization [23,40] is an extreme
quantization approach where both the weights and
activations are represented by a single bit, either +1
or -1. In this paper, we aim to design highly accurate
binary neural networks (BNNs) from both the quanti-
zation and efficient architecture design perspectives.

Existing quantization methods can be mainly di-
vided into two categories. The first category meth-
ods seek to design more effective optimization al-
gorithms to find better local minima for quantized
weights. These works either introduce knowledge dis-
tillation [36, 39, 57] or use loss-aware objectives [20,
21]. The second category approaches focus on im-
proving the quantization function [3,52,55]. To main-
tain good performance, it is essential to learn suitable

1

ar
X

iv
:1

81
1.

10
41

3v
2 

 [
cs

.C
V

] 
 2

7 
N

ov
 2

01
8



mappings between discrete values and their floating-
point counterparts . However, designing quanti-
zation function is highly non-trivial especially for
BNNs, since the quantization functions are often non-
differentiable and gradients can only be roughly ap-
proximated.

The above two categories of methods belong to
value approximation, which seeks to quantize weights
and/or activations by preserving most of the repre-
sentational ability of the original network. However,
the value approximation approaches have a natural
limitation that it is merely a local approximation.
Moreover, these methods often lacks of adaptive abil-
ity to general tasks. Given a pretrained model on a
specific task, the quantization error will inevitably
occur and the final performance may be affected.

In this paper, we seek to explore a third category
called structure approximation . The main objec-
tive is to redesign a binary architecture that can di-
rectly match the capability of a floating-point model.
In particular, we propose a Structured Binary Neu-
ral Network called Group-Net to partition the full-
precision model into groups and use a set of parallel
binary bases to approximate its floating-point struc-
ture counterpart. In this way, higher-level structural
information can be better preserved than the value
approximation approaches.

What’s more, relying on the proposed structured
model, we are able to design flexible binary struc-
tures according to different tasks and exploit task-
specific information or structures to compensate the
quantization loss and facilitate training. For exam-
ple, when transferring Group-Net from image classi-
fication to semantic segmentation, we are motivated
by the structure of Atrous Spatial Pyramid Pooling
(ASPP) [4]. In DeepLab v3 [5] and v3+ [6], ASPP is
merely applied on the top of extracted features while
each block in the backbone network can employ one
atrous rate only. In contrast, we propose to directly
apply different atrous rates on parallel binary bases
in the backbone network, which is equivalent to ab-
sorbing ASPP into the feature extraction stage. In
this way, we significantly boost the performance on
semantic segmentation, without increasing the com-
putation complexity of the binary convolutions.

In general, it is nontrivial to extend previous

value approximation based quantization approaches
to more challenging tasks such as semantic segmen-
tation (or other general computer vision tasks). How-
ever, as will be shown, our Group-Net can be easily
extended to other tasks. Nevertheless, it is worth
mentioning that value and structure approximation
are complementary rather than contradictory. In
other words, both are important and should be ex-
ploited to obtain highly accurate BNNs.

Our methods are also motivated by those energy-
efficient architecture design approaches [8, 22, 25, 53]
which seek to replace the traditional expensive con-
volution with computational efficient convolutional
operations (i.e., depthwise separable convolution,
1 × 1 convolution). Nevertheless, we propose to de-
sign binary network architectures for dedicated hard-
ware from the quantization view. We highlight that
while most existing quantization works focus on di-
rectly quantizing the full-precision architecture, at
this point in time we do begin to explore alterna-
tive architectures that shall be better suited for deal-
ing with binary weights and activations. In partic-
ular, apart from decomposing each group into sev-
eral binary bases, we also propose to learn the con-
nections between each group by introducing a fu-
sion gate. Moreover, Group-Net can be possibly fur-
ther improved with Neural Architecture Search meth-
ods [38,58,59] .

Our contributions are summarized as follows:

• We propose to design accurate BNNs structures
from the structure approximation perspective.
Specifically, we divide the networks into groups
and approximate each group using a set of bi-
nary bases. We also propose to automatically
learn the decomposition by introducing soft con-
nections.

• The proposed Group-Net has strong flexibility
and can be easily extended to other tasks. For
instance, in this paper we propose Binary Par-
allel Atrous Convolution (BPAC), which em-
beds rich multi-scale context into BNNs for ac-
curate semantic segmentation. Group-Net with
BPAC significantly improves the performance
while maintaining the complexity compared to
employ Group-Net only.

2



• We evaluate our models on ImageNet and PAS-
CAL VOC datasets based on ResNet. Exten-
sive experiments show the proposed Group-Net
achieves the state-of-the-art trade-off between
accuracy and computational complexity.

2 Related Work

Network quantization: The recent increasing de-
mand for implementing fixed point deep neural net-
works on embedded devices motivates the study of
network quantization. Fixed-point approaches that
use low-bitwidth discrete values to approximate real
ones have been extensively explored in the litera-
ture [3,23,30,40,55,57]. BNNs [23,40] propose to con-
strain both weights and activations to binary values
(i.e., +1 and -1), where the multiply-accumulations
can be replaced by purely xnor(·) and popcount(·) op-
erations. To make a trade-off between accuracy and
complexity, [13,15,29,48] propose to recursively per-
form residual quantization and yield a series of binary
tensors with decreasing magnitude scales. However,
multiple binarizations are sequential process which
cannot be paralleled. In [30], Lin et al. propose to
use a linear combination of binary bases to approxi-
mate the floating point tensor during forward prop-
agation. This inspires aspects of our approach, but
unlike all of these local tensor approximations, we
additionally directly design BNNs from a structure
approximation perspective.

Efficient architecture design: There has been a
rising interest in designing efficient architecture in
the recent literature. Efficient model designs like
GoogLeNet [46] and SqueezeNet [25] propose to re-
place 3×3 convolutional kernels with 1×1 size to
reduce the complexity while increasing the depth
and accuracy. Additionally, separable convolutions
are also proved to be effective in Inception ap-
proaches [45, 47]. This idea is further generalized
as depthwise separable convolutions by Xception [8],
MobileNet [22, 44] and ShuffleNet [53] to generate
energy-efficient network structure. To avoid hand-
crafted heuristics, neural architecture search [31, 32,
38,58,59] has been explored for automatic model de-
sign.

3 Method

Most previous literature has focused on value approx-
imation by designing accurate binarization functions
for weights and activations (e.g., multiple binariza-
tions [13, 15, 29, 30, 48]). In this paper, we seek to
binarize both weights and activations of CNNs from
a “structure approximation” view. In the following,
we first give the problem definition and some basics
about binarization in Sec. 3.1. Then, in Sec. 3.2,
we explain our binary architecture design strategy.
Finally, in Sec. 3.3, we describe how to utilize task-
specific attributes to generalize our approach to se-
mantic segmentation.

3.1 Problem definition

For a convolutional layer, we define the input x ∈
Rcin×win×hin , weight filter w ∈ Rc×w×h and the out-
put y ∈ Rcout×wout×hout , respectively.

Binarization of weights: Following [40], we ap-
proximate the floating-point weight w by a binary
weight filter bw and a scaling factor α ∈ R+ such
that w ≈ αbw, where bw is the sign of w and α
calculates the mean of absolute values of w. In gen-
eral, sign(·) is non-differentiable and so we adopt the
straight-through estimator [1] (STE) to approximate
the gradient calculation. Formally, the forward and
backward processes can be given as follows:

Forward : bw = α · sign(w),

Backward :
∂`

∂w
=

∂`

∂bw
· ∂bw

∂w
≈ ∂`

∂bw
,

(1)

where ` is the loss.

Binarization of activations: For activation bina-
rization, we utilize the piecewise polynomial function
to approximate the sign function as in [34]. The for-
ward and backward can be written as:

Forward : ba = sign(x),

Backward : ∂`
∂x = ∂`

∂ba ·
∂ba

∂x ,

where ∂ba

∂x =

 2 + 2x : −1 ≤ x < 0
2− 2x : 0 ≤ x < 1
0 : otherwise

.
(2)

3



3.2 Structured Binary Network De-
composition

In this paper, we seek to design a new structural rep-
resentation of a network for quantization. First of
all, note that a float number in computer is repre-
sented by a fixed-number of binary digits. Motivated
by this, rather than directly doing the quantization
via “value decomposition”, we propose to decompose
a network into binary structures while preserving its
representability.

Specifically, given a floating-point residual network
Φ with N blocks, we decompose Φ into P binary
fragments [F1, ...,FP ], where Fi(·) can be any bi-
nary structure. Note that each Fi(·) can be differ-
ent. A natural question arises: can we find some
simple methods to decompose the network with bi-
nary structures so that the representability can be
exactly preserved? To answer this question, we here
explore two kinds of architectures for F(·), namely
layer-wise decomposition and group-wise decomposi-
tion in Sec. 3.2.1 and Sec. 3.2.2, respectively. After
that, we will present a novel strategy for automatic
decomposition in Sec. 3.2.3.

3.2.1 Layer-wise binary decomposition

The key challenge of binary decomposition is how to
reconstruct or approximate the floating-point struc-
ture. The simplest way is to approximate in a layer-
wise manner. LetB(·) be a binary convolutional layer
and bw

i be the binarized weights for the i-th layer.
In Fig. 1 (c), we illustrate the layer-wise feature re-
construction for a single block. Specifically, for each
layer, we aim to fit the full-precision structure using
a set of binarized homogeneous branches F(·) given a
floating-point input tensor x:

F(x) =

K∑
i=1

λiBi(x) =

K∑
i=1

λi(b
w
i ⊕ sign(x)), (3)

where ⊕ is bitwise operations xnor(·) and
popcount(·), K is the number of branches and
λi is the combination coefficient to be determined.
During the training, the structure is fixed and each
binary convolutional kernel bw

i as well as λi are
directly updated with end-to-end optimization. The
scale scalar can be absorbed into batch normalization

when doing inference. Note that all Bi’s in Eq. (3)
have the same topology as the original floating-point
counterpart. Each binary branch gives a rough
approximation and all the approximations are ag-
gregated to achieve more accurate reconstruction to
the original full precision convolutional layer. Note
that when K = 1, it corresponds to directly binarize
the floating-point convolutional layer (Fig. 1 (b)).
However, with more branches (a larger K), we are
expected to achieve more accurate approximation
with more complex transformations.

During the inference, the homogeneous K bases
can be parallelizable and thus the structure is hard-
ware friendly. This will bring significant gain in
speed-up of the inference. Specifically, the bitwise
XNOR operation and bit-counting can be performed
in a parallel of 64 by the current generation of
CPUs [34, 40]. And we just need to calculate K bi-
nary convolutions and K full-precision additions. As
a result, the speed-up ratio σ for a convolutional layer
can be calculated as:

σ =
cincoutwhwinhin

1
64 (Kcincoutwhwinhin) +Kcoutwouthout

,

=
64

K
· cinwhwinhin
cinwhwinhin + 64wouthout

.

(4)

We take one layer in ResNet for example. If we set
cin = 256, w× h = 3× 3, win = hin = wout = hout =
28, K = 5, then it can reach 12.45× speedup. But
in practice, each branch can be implemented in par-
allel. And the actual speedup ratio is also influenced
by the process of memory read and thread communi-
cation. We further report real speedup ratio on CPU
in Sec. 5.2.3.

3.2.2 Group-wise binary decomposition

In the layer-wise approach, we approximate each
layer with multiple branches of binary layers. Note
each branch will introduce a certain amount of er-
ror and the error may accumulate due to the aggre-
gation of multi-branches. As a result, this strategy
may incur severe quantization errors and bring large
deviation for gradients during backpropagation. To
alleviate the above issue, we further propose a more
flexible decomposition strategy called group-wise bi-
nary decomposition, to preserve more structural in-

4



conv conv ⊕

(b)

λ1
⊕

ℱ

…

λK

⊕
…

B(⋅)

B(⋅)

B(⋅)

B(⋅)
⊕

(⋅)

(a) (c)

⊕B(⋅)B(⋅)

Figure 1: Overview of the baseline binarization method and the proposed layer-wise binary decomposition. We take one
residual block with two convolutional layers for illustration. For convenience, we omit batch normalization and nonlinearities.
(a): The floating-point residual block. (b): Direct binarization of a full-precision block. (c): Layer-wise binary decomposition
in Eq. (3), where we use a set of binary convolutional layers B(·) to approximate a floating-point convolutional layer.

conv conv ⊕ conv conv ⊕

(c) …

B(⋅)

(a)

B(⋅) ⊕ B(⋅) B(⋅) ⊕ λ1

λK

⊕
B(⋅) B(⋅) ⊕ B(⋅) B(⋅) ⊕

B(⋅) B(⋅) ⊕ λ1

λK

⊕
B(⋅) B(⋅) ⊕

B(⋅) B(⋅) ⊕ λ1

λK

⊕
B(⋅) B(⋅) ⊕

(b) ……

G(⋅)

H (⋅)

Figure 2: Illustration of the proposed group-wise binary de-
composition strategy. We take two residual blocks for de-
scription. (a): The floating-point residual blocks. (b): Basic
group-wise binary decomposition in Eq. (5), where we approx-
imate a whole block with a linear combination of binary blocks
G(·). (c): We approximate a whole group with homogeneous
binary bases H(·), where each group consists of several blocks.
This corresponds to Eq. (6).

formation during approximation.

To explore the group-structure decomposition, we
first consider a simple case where each group consists
of only one block. Then, the layer-wise approxima-
tion strategy can be easily extended to the group-wise
case. As shown in Fig. 2 (b), similar to the layer-wise
case, each floating-point group is decomposed into
multiple binary groups. However, each group Gi(·) is
a binary block which consists of several binary con-
volutions and floating-point element-wise operations
(i.e., ReLU, AddTensor). For example, we can set
Gi(·) as the basic residual block [18] which is shown
in Fig. 2 (a). Considering the residual architecture,

we can decompose F(x) by extending Eq. (3) as:

F(x) =

K∑
i=1

λiGi(x), (5)

where λi is the combination coefficient to be learned.
In Eq. (5), we use a linear combination of homoge-
neous binary bases to approximate one group, where
each base Gi is a binarized block. In this way, we ef-
fectively keep the original residual structure in each
base to preserve the network capacity. As shown
in Sec. 5.3.1, the group-wise decomposition strategy
performs much better than the simple layer-wise ap-
proximation.

Furthermore, the group-wise approximation is flex-
ible. We now analyze the case where each group
may contain different number of blocks. Suppose
we partition the network into P groups and it fol-
lows a simple rule that each group must include
one or multiple complete residual building blocks.
For the p-th group, we consider the blocks set T ∈
{Tp−1 + 1, ..., Tp}, where the index Tp−1 = 0 if p = 1.
And we can extend Eq. (5) into multiple blocks for-
mat:

F(xTp−1+1) =
K∑
i=1

λiHi(x),

=
K∑
i=1

λiG
Tp

i (G
Tp−1
i (...(G

Tp−1+1
i (xTp−1+1))...)),

(6)
where H(·) is a cascade of consequent blocks which is
shown in Fig. 2 (c). Based on F(·), we can efficiently
construct a network by stacking these groups and
each group may consist of one or multiple blocks. Dif-
ferent from Eq. (5), we further expose a new dimen-
sion on each base, which is the number of blocks. This
greatly increases the structure space and the flexibil-
ity of decomposition. We illustrate several possible

5



connections in Sec. S1 in the supplementary file and
further describe how to learn the decomposition in
Sec. 3.2.3.

3.2.3 Learning for dynamic decomposition

There is a big challenge involved in Eq. (6). Note
that the network has N blocks and the possible num-
ber of connections is 2N . Clearly, it is not practical
to enumerate all possible structures during the train-
ing. Here, we propose to solve this problem by learn-
ing the structures for decomposition dynamically. We
introduce in a fusion gate as the soft connection be-
tween blocks G(·). To this end, we first define the
input of the i-th branch for the n-th block as

Cn
i = sigmoid(θni ),

xn
i = Cn

i �Gn−1
i (xn−1

i )

+ (1− Cn
i )�

K∑
j=1

λjG
n−1
j (xn−1

j ),

(7)

where θ ∈ RK is a learnable parameter vector and
Cn

i is a gate scalar.

λ1
⊗

⊕

⊕
⊕

⊗ ⊕

Fusion gate

λK

…

B(⋅)

B(⋅) B(⋅)

B(⋅) λ1
⊕

⊕
⊕
λK

…

B(⋅)

B(⋅) B(⋅)

B(⋅)

C11−C1G1
n−1 G1

n

Figure 3: Illustration of the soft connection between two
neighbouring blocks. For convenience, we only illustrate the
fusion strategy for one branch.

Here, the branch input xn
i is a weighted combina-

tion of two paths. The first path is the output of the
corresponding i-th branch in the (n − 1)-th block,
which is a straight connection. The second path is
the aggregation output of the (n − 1)-th block. The
detailed structure is shown in Fig. 3. In this way,
we make more information flow into the branch and
increase the gradient paths for improving the conver-
gence of BNNs.

Remarks: For the extreme case when
K∑
i=1

Cn
i = 0,

Eq. (7) will be reduced to Eq. (5) which means we
approximate the (n− 1)-th and the n-th block inde-

pendently. When
K∑
i=1

Cn
i = K, Eq. (7) is equivalent to

Eq. (6) and we set H(·) to be two consequent blocks
and approximate the group as a whole. Interestingly,

when
N∑

n=1

K∑
i=1

Cn
i = NK, it corresponds to set H(·) in

Eq. (6) to be a whole network and directly ensemble
K binary models.

(a): The conventional floating-point dilated convolution.

(b):  The proposed Binary Parallel Atrous Convolution (BPAC). 

Sign Multi-dilations decompose

-1 1 -1 1 -1 1 -1
1 1 -1 1 1 -1 1
1 -1 -1 1 -1 1 -1
-1 -1 1 -1 1 1 1
1 1 -1 -1 1 -1 1
-1 -1 1 1 -1 -1 -1
-1 1 -1 1 -1 1 1

-1 1 -1
1 -1 1
-1 1 -1

3x3 Conv
rate=1

3x3 Conv
rate=2

…
..

Sum

⊕

⊕Binary feature map

Output
-1 -1 -1

1 -1 -1

1 -1 1

⊛

Floating-point feature map 3x3 Conv, dilation rate=2

Outputa11 a12 a13 a14 a15 a16 a17
a21 a22 a23 a24 a25 a26 a27
a31 a32 a33 a34 a35 a36 a37
a41 a42 a43 a44 a45 a46 a47
a51 a52 a53 a54 a55 a56 a57
a61 a62 a63 a64 a65 a66 a67
a71 a72 a73 a74 a75 a76 a77

w11 w12 w13

w21 w22 w23

w31 w32 w33

Figure 4: The comparison between conventional dilated con-
volution and BPAC. For expression convenience, the group
only has one convolutional layer. ~ is the convolution oper-
ation and ⊕ indicates the XNOR-popcount operations. (a):
The original floating-point dilated convolution. (b): We de-
compose the floating-point atrous convolution into a combina-
tion of binary bases, where each base uses a different dilated
rate. We sum the output features of each binary branch as
the final representation.

3.3 Extension to semantic segmenta-
tion

The key message conveyed in the proposed method
is that although each binary branch has a limited
modeling capability, aggregating them together leads
to a powerful model. In this section, we show that
this principle can be applied to tasks other than im-
age classification. In particular, we consider seman-
tic segmentation which can be deemed as a dense

6



pixel-wise classification problem. In the state-of-the-
art semantic segmentation network, the atrous con-
volutional layer [5] is an important building block,
which performs convolution with a certain dilation
rate. To directly apply the proposed method to such
a layer, one can construct multiple binary atrous con-
volutional branches with the same structure and ag-
gregate results from them. However, we choose not
to do this but propose an alternative strategy: we
use different dilation rates for each branch. In this
way, the model can leverage multiscale information
as a by-product of the network branch decomposition.
It should be noted that this scheme does not incur
any additional model parameters and computational
complexity compared with the naive binary branch
decomposition. The idea is illustrated in Fig. 4 and
we call this strategy Binary Parallel Atrous Convolu-
tion (BPAC).

In this paper, we use the same ResNet backbone
in [5, 6] with output stride=8, where the last two
blocks employ atrous convolution. In BPAC, we keep
rates = {2, 3, ...,K,K+ 1} and rates = {6, 7, ...,K+
4,K + 5} for K bases in the last two blocks, respec-
tively. Intriguingly, as will be shown in Sec. 5.4, our
strategy brings so much benefit that using five binary
bases with BPAC achieves similar performance as the
original full precision network despite the fact that it
saves considerable computational cost.

4 Discussions

Complexity analysis: A comprehensive compari-
son of various quantization approaches over complex-
ity and storage is shown in Table 1. For example,
in the previous state-of-the-art binary model ABC-
Net [30], each convolutional layer is approximated
using K weight bases and K activation bases, which
needs to calculate K2 times binary convolution. In
contrast, we just need to approximate several groups
with K structural bases. As reported in Sec. 5.2 , we
save approximate K times computational complex-
ity while still achieving comparable Top-1 accuracy.
Since we use K structural bases, the number of pa-
rameters increases by K times in comparison to the
full-precision counterpart. But we still save memory

bandwidth by 32/K times since all the weights are
binary in our paper. For our approach, there exists
element-wise operations between each group, so the
computational complexity saving is slightly less than
64
K×.

Differences of Group-net from fixed-point
methods: The proposed Group-net with K bases is
different from the K-bit fixed-point approaches [36,
52,55,57].

We first show how the inner product between fixed-
point weights and activations can be computed by
bitwise operations. Let a weight vector w ∈ RM be
encoded by a vector bw

i ∈ {−1, 1}M , i = 1, ...,K. As-
sume we also quantize activations toK-bit. Similarly,
the activations x can be encoded by ba

j ∈ {−1, 1}M ,
j = 1, ...,K. Then, the convolution can be written as

QK(wT )QK(x) =

K−1∑
i=0

K−1∑
j=0

2i+j(bw
i ⊕ ba

j ), (8)

where QK(·) is any quantization function1.

During the inference, it needs to first get the en-
coding ba

j for each bit via linear regression. Then,

it calculates and sums over K2 times xnor(·) and
popcount(·). The complexity is about O(K2). Note
that the output range for a single output shall be
[−(2K − 1)2M, (2K − 1)2M ].

In contract, we directly obtain ba
j via sign(x).

Moreover, since we just need to calculate K times
xnor(·) and popcount(·) (see Eq. (3)), and then sum
over the outputs, the computational complexity is
O(K). For binary convolution, its output range is
{-1, 1}. So the value range for each element after
summation is [−KM,KM ], in which the number of
distinct values is much less than that in fixed-point
methods.

In summary, compared with K-bit fixed-point
methods, Group-Net with K bases just needs

√
K

computational complexity and saves (2K − 1)2/K
accumulator bandwidth. Even

√
K-bit fixed-point

quantization requires more memory bandwidth to
feed signal in SRAM or in registers.

Differences of Group-net from multiple bi-
narizations methods: In ABC-Net [30], a linear

1For simplicity, we only consider uniform quantization in
this paper.

7



Model Weights Activations Operations Memory saving Computation Saving
Full-precision DNN F F +, -, × 1 1

[23,40] B B XNOR, popcount ∼ 32× ∼ 64×
[9, 21] B F +, - ∼ 32 ∼ 2×
[54, 56] QK F +, -, × ∼ 32

K < 2×
[36, 52,55,57] QK QK +, -, × ∼ 32

K < 64
K2×

[13, 15,29,30,48] K ×B K ×B +, -, XNOR, popcount ∼ 32
K < 64

K2×
Group-Net K × (B,B) +, -, XNOR, popcount ∼ 32

K < 64
K×

Table 1: Computational complexity and storage comparison of different quantization approaches. F : full-precision, B: binary,
QK : K-bit quantization.

combination of binary weight/activations bases are
obtained from the full-precision weights/activations
without being directly learned. In contrast, we di-
rectly design the binary network structure, where bi-
nary weights are end-to-end optimized. [13,15,29,48]
propose to recursively approximate the residual er-
ror and obtain a series of binary maps corresponding
to different quantization scales. However, it is a se-
quential process which cannot be paralleled. And all
multiple binarizations methods belong to local tensor
approximation. In contrast to value approximation,
we propose a structure approximation approach to
mimic the full-precision network. Moreover, tensor-
based methods are tightly designed to local value ap-
proximation and are hardly generalized to other tasks
accordingly. In addition, our structure decomposi-
tion strategy achieves much better performance than
tensor-level approximation as shown in Sec. 5.3.1.
More discussions are provided in Sec. S2 in the sup-
plementary file.

5 Experiment

We define several methods for comparison as follows:
LBD: It implements the layer-wise binary decompo-
sition strategy described in Sec. 3.2.1. Group-Net:
It implements the full model with learnt soft connec-
tions described in Sec. 3.2.3. Group-Net**: Fol-
lowing Bi-Real Net [34], we apply shortcut bypassing
every binary convolution to improve the convergence.
And this strategy can only be applied on basic blocks
in ResNet-18 and ResNet-34.

5.1 Implementation details

As in [3,40,55,57], we quantize the weights and acti-
vations of all convolutional layers except that the first
and the last layer have full-precision. In all ImageNet
experiments, training images are resized to 256×256,
and a 224 × 224 crop is randomly sampled from an
image or its horizontal flip, with the per-pixel mean
subtracted. We do not use any further data augmen-
tation in our implementation. We use a simple single-
crop testing for standard evaluation. No bias term is
utilized. We first pretrain the full-precision model as
initialization and fine-tune the binary counterpart.2

We use Adam [27] for optimization. For training all
binary networks, the mini-batch size and weight de-
cay are set to 256 and 0, respectively. The learning
rate starts at 5e-4 and is decayed twice by multiply-
ing 0.1 at the 30th and 40th epoch. We train 50
epochs in total. Following [3, 57], no dropout is used
due to binarization itself can be treated as a regular-
ization. We apply layer-reordering to the networks
as: Sign→ Conv→ ReLU→ BN. Inserting ReLU(·)
after convolution is important for convergence. Our
simulation implementation is based on Pytorch [37].

5.2 Evaluation on ImageNet

The proposed method is evaluated on ImageNet
(ILSVRC2012) [43] dataset. ImageNet is a large-
scale dataset which has ∼1.2M training images from
1K categories and 50K validation images. Several
representative networks are tested: ResNet-18 [18],
ResNet-34 and ResNet-50. As discussed in Sec. 4,
binary approaches and fixed-point approaches differ

2For pretraining Group-Net, we use ReLU(·) as nonlinear-
ity. For pretraining Group-Net**, we use Tanh(·) as nonlin-
earity.

8



a lot in computational complexity as well as storage
consumption. So we compare the proposed approach
with binary neural networks in Table 2 and fixed-
point approaches in Table 3, respectively.

5.2.1 Comparison with binary neural net-
works

Since we employ binary weights and binary activa-
tions, we directly compare to the previous state-
of-the-art binary approaches, including BNN [23],
XNOR-Net [40], Bi-Real Net [34] and ABC-Net [30].
We report the results in Table 2 and summarize the
following points. 1): The most comparable base-
line for Group-Net is ABC-Net. As discussed in
Sec. 4, we save considerable computational complex-
ity while still achieving better performance compared
to ABC-Net. In comparison to directly binarizing
networks, Group-Net achieves much better perfor-
mance but needs K times more storage and com-
plexity. However, the K homogeneous bases can be
easily parallelized on the real chip. In summary, our
approach achieves the best trade-off between compu-
tational complexity and prediction accuracy. 2): By
comparing Group-Net** (5 bases) and Group-Net (8
bases), we can observe comparable performance. It
justifies adding more shortcuts can facilitate BNNs
training which is consistent with [34]. 3): For Bot-
tleneck structure in ResNet-50, we find larger quanti-
zation error than the counterparts using basic blocks
with 3× 3 convolutions in ResNet-18 and ResNet-34.
The similar observation is also claimed by [2]. We
assume that this is mainly attributable to the 1 × 1
convolutions in Bottleneck. The reason is 1×1 filters
are limited to two states only (either 1 or -1) and they
have very limited learning power. What’s more, the
bottleneck structure reduces the number of filters sig-
nificantly, which means the gradient paths are greatly
reduced. In other words, it blocks the gradient flow
through BNNs. Even though the bottleneck structure
can benefit full-precision training, it is really needed
to be redesigned in BNNs. To increase gradient paths,
the 1× 1 convolutions should be removed.

5.2.2 Comparison with fix-point approaches

Since we use K binary group bases, we compare our
approach with at least

√
K-bit fix-point approaches.

In Table 3, we compare our approach with the state-
of-the-art fixed-point approaches DoReFa-Net [55],
SYQ [12] and LQ-Nets [52]. As described in Sec. 4,
K binarizations are more superior than the

√
K-bit

width quantization with respect to the resource con-
sumption. Here, we set K=4. DOREFA-Net and
LQ-Nets use 2-bit weights and 2-bit activations. SYQ
employs binary weights and 8-bit activations. All
the comparison results are directly cited from the
corresponding papers. LQ-Nets is the current best-
performing fixed-point approach and its activations
have a long-tail distribution. We can observe that
Group-Net requires less memory bandwidth while
still achieving comparable accuracy with LQ-Nets.

5.2.3 Hardware implementation on Ima-
geNet

We currently implement ResNet-34 using Group-
Net** and test the inference time on XEON E5-
2630 v3 CPU with 8 cores. We use the off-the-shelf
BMXNet [51] and OpenMP for acceleration. The
speedup ratio for convolution using xnor 64 omp can
reach more than 100×. Moreover, BN + sign(·)
is accelerated by XNOR operations following the
implementation in FINN [49]. We cannot acceler-
ate floating-point element-wise operations including
tensor additions and ReLU(·). We finally achieve
∼7.5x speedup in comparison to the original ResNet-
34 model based on MXNet [7], where thread com-
munication occupies a lot of time in CPU. We also
achieve actual ∼5.8x memory saving. However, we
expect to achieve better acceleration on paralleliza-
tion friendly FPGA platforms but currently we do
not have enough resources.

5.3 Ablation study

Due to the limited space, we provide more experi-
ments in Sec. S1 in the supplementary material.

5.3.1 Layer-wise vs. group-wise binary de-
composition

We explore the difference between layer-wise and
group-wise design strategies in Table S6. By com-
paring the results, we find Group-Net outperforms
LBD by 7.2% on the Top-1 accuracy. Note that LBD

9



Model Full BNN XNOR Bi-Real Net ABC-Net (25 bases) Group-Net (5 bases) Group-Net** (5 bases) Group-Net (8 bases)

ResNet-18
Top-1 % 69.7 42.2 51.2 56.4 65.0 64.8 67.0 67.5
Top-5 % 89.4 67.1 73.2 79.5 85.9 85.7 87.5 88.0

ResNet-34
Top-1 % 73.2 - - 62.2 68.4 68.5 70.5 71.8
Top-5 % 91.4 - - 83.9 88.2 88.0 89.3 90.4

ResNet-50
Top-1 % 76.0 - - - 70.1 69.5 - 72.8
Top-5 % 92.9 - - - 89.7 89.2 - 90.5

Table 2: Comparison with the state-of-the-art binary models using ResNet-18, ResNet-34 and ResNet-50 on ImageNet. All
the comparing results are directly cited from the original papers. The metrics are Top-1 and Top-5 accuracy.

Model W A Top-1 (%) Top-5 (%)
Full-precision 32 32 69.7 89.4

Group-Net** (4 bases) 1 1 66.3 86.6
Group-Net (4 bases) 1 1 64.2 85.6

LQ-Net [52] 2 2 64.9 85.9
DOREFA-Net [55] 2 2 62.6 84.4

SYQ [12] 1 8 62.9 84.6

Table 3: Comparison with the state-of-the-art fixed-point
models with ResNet-18 on ImageNet. The metrics are Top-1
and Top-5 accuracy.

Model mIOU ∆

ResNet-18, FCN-32s

Full-precision 64.9 -
LQ-Net (3-bit) 62.5 2.4

Group-Net 60.5 4.4
Group-Net + BPAC 63.8 1.1

Group-Net** + BPAC 65.1 -0.2

ResNet-18, FCN-16s

Full-precision 67.3 -
LQ-Net (3-bit) 65.1 2.2

Group-Net 62.7 4.6
Group-Net + BPAC 66.3 1.0

Group-Net** + BPAC 67.7 -0.4

ResNet-34, FCN-32s

Full-precision 72.7 -
LQ-Net (3-bit) 70.4 2.3

Group-Net 68.2 4.5
Group-Net + BPAC 71.2 1.5

Group-Net** + BPAC 72.8 -0.1

ResNet-50, FCN-32s

Full-precision 73.1 -
LQ-Net (3-bit) 70.7 2.4

Group-Net 67.2 5.9
Group-Net + BPAC 70.4 2.7

Table 4: Performance on PASCAL VOC 2012 validation set.

approach can be treated as a kind of tensor approxi-
mation which has similarities with multiple binariza-
tions methods in [13,15,29,30,48] and the differences
are described in Sec. 4. It strongly shows the ne-
cessity for employing the group-wise decomposition
strategy to get promising results. We speculate that
this significant gain is partly due to the preserved
block structure in binary bases. It also proves that
apart from designing accurate binarization function,
it is also essential to design appropriate structure for
BNNs.

Model Bases Top-1 % Top-5 %
Full-precision 1 69.7 89.4

Group-Net 5 64.8 85.7
LBD 5 57.6 79.7

Table 5: Comparison with Group-Net and LBD using
ResNet-18 on ImageNet. The metrics are Top-1 and Top-5
accuracy.

5.4 Evaluation on PASCAL VOC

We evaluate the proposed methods on the PASCAL
VOC 2012 semantic segmentation benchmark [11]
which contains 20 foreground object classes and one
background class. The original dataset contains
1,464 (train), 1,449 (val) and 1,456 (test) images.
The dataset is augmented by the extra annotations
from [17], resulting in 10,582 training images. The
performance is measured in terms of averaged pixel
intersection-over-union (mIOU) over 21 classes. Our
experiments are based on the original FCN [35]. For
both FCN-32s and FCN-16s, we adjust the dilation
rates of the last 2 blocks in ResNet with atrous con-
volution to make the output stride equal to 8. We
first pretrain the binary backbone network on Im-
ageNet dataset and fine-tune it on PASCAL VOC.
During fine-tuning, we use Adam with initial learn-
ing rate=1e-4, weight decay=1e-5 and batch size=16.
We set the number of bases K = 5 in experiments.
We train 40 epochs in total and decay the learning
rate by a factor of 10 at 20 and 30 epochs. We do
not add any auxiliary loss and ASPP. We empirically
observe full-precision FCN under dilation rates (4, 8)
in last two blocks achieves the best performance. The
main results are in Table 4.

From the results, we can observe that when all
bases using the same dilation rates, there is a large
performance gap with the full-precision counterpart.

10



This performance drop is consistent with the clas-
sification results on ImageNet dataset in Table 2. It
proves that the quality of extracted features have
a great impact on the segmentation performance.
What’s more, by utilizing task-specific BPAC, we find
significant performance increase with no computa-
tional complexity added, which strongly justifies the
flexibility of Group-Net. Moreover, we also quantize
the backbone network using fixed-point LQ-Nets with
3-bit weights and 3-bit activations. Compared with
LQ-Nets, we can achieve comparable performance
while saving considerable complexity. In addition, we
can observe Group-Net + BPAC based on ResNet-
34 even outperform the counterpart on ResNet-50.
This shows the widely used bottleneck structure is
not suited to BNNs as explained in Sec. 5.2.1. We
provide more analysis in Sec. S3 in the supplemen-
tary file.

6 Conclusion

In this paper, we have begun to explore highly ef-
ficient and accurate CNN architectures with binary
weights and activations. Specifically, we have pro-
posed to directly decompose the full-precision net-
work into multiple groups and each group is approxi-
mated using a set of binary bases which can be opti-
mized in an end-to-end manner. We also propose to
learn the decomposition automatically. Experimen-
tal results have proved the effectiveness of the pro-
posed approach on the ImageNet classification task.
Moreover, we have generalized Group-Net from im-
age classification task to semantic segmentation and
achieved promising performance on PASCAL VOC.
We have implemented the homogeneous multi-branch
structure on CPU and achieved promising accelera-
tion on test-time inference.

Appendix

S7 More ablation study on Im-
ageNet classification

In this section, we continue the Sec. 5.3 in the
main paper to provide more comparative experi-
ments. We define more methods for comparison as
follows: GBD v1: We implement with the group-
wise binary decomposition strategy, where each base
consists of one block. It corresponds to the approach
described in Eq. (5) and is illustrated in Fig. S5 (a).
GBD v2: Similar to GBD v1, the only difference is
that each group base has two blocks. It is illustrated
in Fig. S5 (b) and is explained in Eq. (6). GBD
v3: It is an extreme case where each base is a whole
network, which can be treated as an ensemble of a
set of binary networks. This case is shown in Fig. S5
(d).

S7.1 Group space exploration

We are interested in exploring the influence of differ-
ent group-wise decomposition strategies. We present
the results in Table S6. We observe that by learning
the soft connections between each block results in the
best performance on ResNet-18. And methods based
on hard connections perform relatively worse. From
the results, we can conclude that designing compact
binary structure is essential for highly accurate classi-
fication. What’s more, we expect to further boost the
performance by integrating with the NAS approaches
as discussed in Sec. S8.

S7.2 Effect of the number of bases

We further explore the influence of number of bases
K to the final performance in Table S7. When the
number is set to 1, it corresponds to directly binarize
the original full-precision network and we observe ap-
parent accuracy drop compared to its full-precision
counterpart. With more bases employed, we can find
the performance steadily increases. The reason can
be attributed to the better fitting of the floating-
point structure, which is a trade-off between accu-

11



…

(d)(c)

…

(a) (b)

G(⋅)

G(⋅)
⊕ …

G(⋅)

G(⋅)
⊕ …

G(⋅)

G(⋅)
⊕ …

G(⋅)

G(⋅)
⊕

G(⋅) G(⋅)

G(⋅) G(⋅)
⊕ …

G(⋅) G(⋅)

G(⋅) G(⋅)
⊕ …

G(⋅)

G(⋅)
⊕ …

G(⋅) G(⋅)

G(⋅) G(⋅)
⊕ …

G(⋅)

G(⋅)
⊕ …

G(⋅) G(⋅)

G(⋅) G(⋅)

G(⋅) G(⋅)

G(⋅) G(⋅)
⊕

FB FB FB FB

decompose

FB FB FB FB FB FB FB FB FB FB FB FB

decomposedecomposedecompose

Figure S5: Illustration of several possible group-wise architectures. We assume the original full-precision network comprises
four blocks. “FB” represents the floating-point block. G(·) is defined in Sec. 3.2.2 in the main paper, which represents a
binary block. We omit the skip connections for convenience. (a): Each group comprises one block and we approximate each
floating-point block with a set of binarized blocks. (b): Decompose the network into groups, where each group contains two
blocks. Then we approximate each floating-point group using a set of binarized groups. (c): Each group contains different
number of blocks. (d): An extreme case. We directly decompose the whole floating-point network into an ensemble of several
binary networks.

Model Bases Top-1 % Top-5 % Top-1 gap % Top-5 gap %
ResNet-18 Full-precision 1 69.7 89.4 - -

Group-Net 5 64.8 85.7 4.9 3.7
GBD v1 5 63.0 84.8 6.7 4.6
GBD v2 5 62.2 84.1 7.5 5.3
GBD v3 5 59.2 82.3 10.5 7.1

Table S6: Comparisons between several group-wise decomposition strategies. Top-1 and Top-5 accuracy gap to the corre-
sponding full-precision networks are also reported.

Model Bases Top-1 % Top-5 % Top-1 gap % Top-5 gap %
Full-precision 1 69.7 89.4 - -

Group-Net 1 55.6 78.6 14.1 10.8
Group-Net 3 62.5 84.2 7.2 5.2
Group-Net 5 64.8 85.7 4.9 3.7

Table S7: Validation accuracy of Group-Net on ImageNet with different number of bases. All cases are based on the ResNet-18
network with binary weights and activations.

racy and complexity. It can be expected that with
enough bases, the network should has the capacity
to approximate the full-precision network precisely.
With the multi-branch group-wise design, we can
achieve high accuracy while still significantly reduc-
ing the inference time and power consumption. Inter-
estingly, each base can be implemented using small
resource and the parallel structure is quite friendly
to FPGA/ASIC.

S8 More discussions

Relation to ResNeXt [50]: The homogeneous
multi-branch architecture design shares some spirit of
ResNeXt and enjoys the advantage of introducing a
“cardinality” dimension. However, our objectives are
totally different. ResNeXt aims to increase the ca-
pacity while maintaining the complexity. To achieve
this, it first divides the input channels into groups
and perform efficient group convolutions implemen-
tation. Then all the group outputs are aggregated to
approximate the original feature map. In contrast, we
first divide the network into groups and directly repli-

12



cate the floating-point structure for each branch while
both weights and activations are binarized. In this
way, we can reconstruct the full-precision structure
via aggregating a set of low-precision transformations
for complexity reduction in the energy-efficient hard-
ware. Furthermore, our structured transformations
are not restricted to only one block as in ResNeXt.
Group-Net has strong flexibility: The group-
wise approximation approach can be efficiently inte-
grated with Neural Architecture Search (NAS) frame-
works [31, 33, 38, 58, 59] to explore the optimal archi-
tecture. Based on Group-Net, we can further add
number of bases, filter numbers, connections among
bases into the search space. The proposed approach
can also be combined with knowledge distillation
strategy as in [36, 57]. The basic idea is to train a
target low-precision network alongside another pre-
trained full-precision guidance network. An addi-
tional regularizer is added to minimize the difference
between student’s and teacher’s intermediate feature
representations for higher accuracy. In this way, we
expect to further decrease the number of bases while
maintaining the performance.

S9 More ablation study on se-
mantic segmentation

S9.1 Influence of dilation rates on full-
precision baselines

In this section, we explore the effect of dilation rates
in the last two blocks for full-precision baselines. We
show the mIOU change in Figure. S6. For dilation
rates (1, 1), it corresponds to the original FCN base-
line [35] with no atrous convolution applied. For both
FCN-32s and FCN-16s, we can observe that when us-
ing dilated convolution with rate = 4 and rate = 8 in
the last two blocks respectively, we can get the best
performance.

S9.2 Full-precision baselines with
multiscale dilations

In Sec. 5.4 in the paper, we have shown that Group-
Net with BPAC can accurately fit the full-precision

(1,1) (2,4) (3,6) (4,8) (5,10) (6,12)
dilation rates in the last two blocks

62

64

66

68

70

72

74

m
IO

U

mIOU with different dilation rates on full-precision models

ResNet-18, FCN-32s
ResNet-18, FCN-16s
ResNet-34, FCN-32s
ResNet-50, FCN-32s

Figure S6: Illustration of the influence of different dilation
rates in the last two blocks for the floating-point baseline mod-
els.

Model mIOU

ResNet-18, FCN-32s
Full-precision (multi-dilations) 67.6

Full-precision 64.9
Group-Net** + BPAC 65.1

ResNet-18, FCN-16s
Full-precision (multi-dilations) 70.1

Full-precision 67.3
Group-Net** + BPAC 67.7

ResNet-34, FCN-32s
Full-precision (multi-dilations) 75.0

Full-precision 72.7
Group-Net** + BPAC 72.8

ResNet-50, FCN-32s
Full-precision (multi-dilations) 75.5

Full-precision 73.1
Group-Net + BPAC 70.4

Table S8: Performance on PASCAL VOC 2012 validation
set.

model while saving considerable computational com-
plexity. To explore the effect of multiscale dila-
tions on full-precision models, we replace the last
two blocks as the same structure of BPAC. Specifi-
cally, we use K homogeneous floating-point branches
in the last two blocks while each branch is different
in dilation rate. We set K = 5 here. Because of this
modification, the FLOPs for full-precision ResNet-
18, ResNet-34 and ResNet-50 increases by 2.79×,
3.14× and 3.13×, respectively. As shown in Ta-
ble S8, the multiple dilations design improves the
performance of full-precision baselines but at a cost
of huge computational complexity increase. In con-
trast, Group-Net+BPAC does not increase the com-

13



putational complexity compared with using Group-
Net only. This proves the flexibility of the proposed
Group-Net which can effectively borrow task-specific
properties to approximate the original floating-point
structure. And this is one of the advantages for em-
ploying structured binary decomposition.

S10 Extending Group-Net to
binary weights and low-
precision activations

In the main paper and in Sec. S7 to Sec. S9, all the
experiments are based on binary weights and binary
activations. To make a tradeoff between accuracy and
computational complexity, we can add more bases as
discussed in Sec. S7.2. However, we can also increase
the bit-width of activations for better accuracy ac-
cording to actual demand. We conduct experiments
on the ImageNet dataset and report the accuracy in
Table S9, Table S10 and Table S11.

S10.1 Fixed-point Activation quanti-
zation

We apply the simple uniform activation quantization
in the paper. As the output of the ReLU function is
unbounded, the quantization after ReLU requires a
high dynamic range. It will cause large quantization
errors especially when the bit-precision is low. To al-
leviate this problem, similar to [24,55], we use a clip
function h(y) = clip(y, 0, β) to limit the range of acti-
vation to [0, β], where β (not learned) is fixed during
training. Then the truncated activation output y is
uniformly quantized to K-bits (K > 1) and we still
use STE to estimate the gradient:

Forward : ỹ = round(y · 2K − 1

β
) · β

2K − 1
,

Backward :
∂`

∂y
=
∂`

∂ỹ
.

(9)

Since the weights are binary, the multiplication in
convolution is replaced by fixed-point addition. One
can simply replace the uniform quantizer with other
non-uniform quantizers for more accurate quantiza-
tion similar to [3, 52].

S10.2 Implementation details

For data preprocessing, it follows the same pipeline
as BNNs. We also quantize the weights and activa-
tions of all convolutional layers except that the first
layer and the last layer are full-precision. For train-
ing ResNet with fixed-point activations, the learning
rate starts at 0.05 and is divided by 10 when it gets
saturated. We use Nesterov momentum SGD for op-
timization. The mini-batch size and weight decay are
set to 128 and 0.0001, respectively. The momentum
ratio is 0.9. We directly learn from scratch since we
empirically observe that fine-tuning does not bring
further benefits to the performance. The convolu-
tion and element-wise operations are in the order:
Conv → BN → ReLU → Quantize.

S10.3 Evaluation on ImageNet

For experiments in Table S9 and Table S10, we use 5
bases (i.e., K = 5). From Table S9, we can observe
that with binary weights and fixed-point activations,
we can achieve highly accurate results. For exam-
ple, by also referring to Table 2 in the main paper,
we can find the Top-1 accuracy drop for Group-Net
on ResNet-50 with tenary and binary activations are
1.5% and 6.5%, respectively. Furthermore, our ap-
proach still works well on plain network structures
such as AlexNet in Table S10. We also provide the
comparison with different number of bases in Ta-
ble S11.

14



Model W A Top-1 % Top-5 % Top-1 gap % Top-5 gap %
ResNet-18 Full-precision 32 32 69.7 89.4 - -

Group-Net 1 2 69.6 89.0 0.1 0.4
Group-Net 1 32 70.4 89.8 -0.7 -0.4
GBD v1 1 4 69.2 88.5 0.5 0.9
GBD v2 1 4 68.3 87.9 1.4 1.5
GBD v3 1 4 64.5 85.0 5.2 4.4

LBD 1 4 60.1 82.2 9.6 7.2
ResNet-50 Full-precision 32 32 76.0 92.9 - -

Group-Net 1 2 74.5 91.5 1.5 1.4
Group-Net 1 4 76.0 92.7 0.0 0.2

Table S9: Validation accuracy of different binary decomposition strategies on ImageNet with different choices of W and A.
‘W’ and ‘A’ refer to the weight and activation bitwidth, respectively.

Model Full-precision LBD GBD v1 Group-Net
Top-1 % 57.2 54.2 57.3 57.8
Top-5 % 80.4 77.6 80.1 80.9

Table S10: Accuracy of AlexNet on ImageNet validation set.
All cases use binary weights and 2-bit activations.

15



Model Bases bitW bitA Top-1 % Top-5 % Top-1 gap % Top-5 gap %
Full-precision 1 32 32 69.7 89.4 - -

Group-Net 1 1 4 61.5 83.2 8.2 6.2
Group-Net 3 1 4 68.5 88.7 1.2 0.7
Group-Net 5 1 4 70.1 89.5 -0.4 -0.1

Table S11: Validation accuracy of Group-Net on ImageNet with number of bases. All cases are based on the ResNet-18
network with binary weights and 4-bit activations.

16



References

[1] Y. Bengio, N. Léonard, and A. Courville. Estimat-
ing or propagating gradients through stochastic neu-
rons for conditional computation. arXiv preprint
arXiv:1308.3432, 2013. 3

[2] J. Bethge, H. Yang, C. Bartz, and C. Meinel. Learn-
ing to train a binary neural network. arXiv preprint
arXiv:1809.10463, 2018. 9

[3] Z. Cai, X. He, J. Sun, and N. Vasconcelos. Deep
learning with low precision by half-wave gaussian
quantization. In Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., pages 5918–5926, 2017. 1, 3, 8, 14

[4] L.-C. Chen, G. Papandreou, I. Kokkinos, K. Mur-
phy, and A. L. Yuille. Deeplab: Semantic image
segmentation with deep convolutional nets, atrous
convolution, and fully connected crfs. IEEE trans-
actions on pattern analysis and machine intelligence,
40(4):834–848, 2018. 2

[5] L.-C. Chen, G. Papandreou, F. Schroff, and
H. Adam. Rethinking atrous convolution for
semantic image segmentation. arXiv preprint
arXiv:1706.05587, 2017. 2, 7

[6] L.-C. Chen, Y. Zhu, G. Papandreou, F. Schroff, and
H. Adam. Encoder-decoder with atrous separable
convolution for semantic image segmentation. Proc.
Eur. Conf. Comp. Vis., 2018. 1, 2, 7

[7] T. Chen, M. Li, Y. Li, M. Lin, N. Wang, M. Wang,
T. Xiao, B. Xu, C. Zhang, and Z. Zhang. Mxnet:
A flexible and efficient machine learning library for
heterogeneous distributed systems. arXiv preprint
arXiv:1512.01274, 2015. 9

[8] F. Chollet. Xception: Deep learning with depthwise
separable convolutions. In Proc. IEEE Conf. Comp.
Vis. Patt. Recogn., pages 1251–1258, 2017. 1, 2, 3

[9] M. Courbariaux, Y. Bengio, and J.-P. David. Bi-
naryconnect: Training deep neural networks with
binary weights during propagations. In Proc. Adv.
Neural Inf. Process. Syst., pages 3123–3131, 2015. 8

[10] A. Ehliar. Area efficient floating-point adder and
multiplier with ieee-754 compatible semantics. In
Field-Programmable Technology (FPT), 2014 Inter-
national Conference on, pages 131–138. IEEE. 1

[11] M. Everingham, L. Van Gool, C. K. Williams,
J. Winn, and A. Zisserman. The pascal visual ob-
ject classes (voc) challenge. Int. J. Comp. Vis.,
88(2):303–338, 2010. 10

[12] J. Faraone, N. Fraser, M. Blott, and P. H. Leong.
Syq: Learning symmetric quantization for efficient

deep neural networks. In Proc. IEEE Conf. Comp.
Vis. Patt. Recogn., 2018. 9, 10

[13] J. Fromm, S. Patel, and M. Philipose. Heteroge-
neous bitwidth binarization in convolutional neural
networks. In Proc. Adv. Neural Inf. Process. Syst.,
2018. 3, 8, 10

[14] G. Govindu, L. Zhuo, S. Choi, and V. Prasanna.
Analysis of high-performance floating-point arith-
metic on fpgas. In Parallel and Distributed Pro-
cessing Symposium, 2004. Proceedings. 18th Inter-
national, page 149. IEEE, 2004. 1

[15] Y. Guo, A. Yao, H. Zhao, and Y. Chen. Net-
work sketching: Exploiting binary structure in deep
cnns. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
pages 5955–5963, 2017. 3, 8, 10

[16] S. Han, J. Pool, J. Tran, and W. Dally. Learning
both weights and connections for efficient neural net-
work. In Proc. Adv. Neural Inf. Process. Syst., pages
1135–1143, 2015. 1

[17] B. Hariharan, P. Arbeláez, L. Bourdev, S. Maji, and
J. Malik. Semantic contours from inverse detectors.
In Proc. Eur. Conf. Comp. Vis., 2011. 10

[18] K. He, X. Zhang, S. Ren, and J. Sun. Deep residual
learning for image recognition. In Proc. IEEE Conf.
Comp. Vis. Patt. Recogn., pages 770–778, 2016. 1,
5, 8

[19] Y. He, X. Zhang, and J. Sun. Channel pruning for ac-
celerating very deep neural networks. In Proc. IEEE
Int. Conf. Comp. Vis., volume 2, page 6, 2017. 1

[20] L. Hou and J. T. Kwok. Loss-aware weight quanti-
zation of deep networks. In Proc. Int. Conf. Learn.
Repren., 2018. 1

[21] L. Hou, Q. Yao, and J. T. Kwok. Loss-aware bina-
rization of deep networks. In Proc. Int. Conf. Learn.
Repren., 2017. 1, 8

[22] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko,
W. Wang, T. Weyand, M. Andreetto, and H. Adam.
Mobilenets: Efficient convolutional neural networks
for mobile vision applications. arXiv preprint
arXiv:1704.04861, 2017. 1, 2, 3

[23] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv,
and Y. Bengio. Binarized neural networks. In Proc.
Adv. Neural Inf. Process. Syst., pages 4107–4115,
2016. 1, 3, 8, 9

[24] I. Hubara, M. Courbariaux, D. Soudry, R. El-Yaniv,
and Y. Bengio. Quantized neural networks: Train-
ing neural networks with low precision weights and
activations. J. Mach. Learn. Res., 18(1):6869–6898,
2017. 14

17



[25] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf,
W. J. Dally, and K. Keutzer. Squeezenet: Alexnet-
level accuracy with 50x fewer parameters and¡ 0.5 mb
model size. arXiv preprint arXiv:1602.07360, 2016.
2, 3

[26] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang,
A. Howard, H. Adam, and D. Kalenichenko. Quan-
tization and training of neural networks for efficient
integer-arithmetic-only inference. In Proc. IEEE
Conf. Comp. Vis. Patt. Recogn., 2018. 1

[27] D. P. Kingma and J. Ba. Adam: A method for
stochastic optimization. In Proc. Int. Conf. Learn.
Repren., 2015. 8

[28] A. Krizhevsky, I. Sutskever, and G. E. Hinton. Im-
agenet classification with deep convolutional neural
networks. In Proc. Adv. Neural Inf. Process. Syst.,
pages 1097–1105, 2012. 1

[29] Z. Li, B. Ni, W. Zhang, X. Yang, and W. Gao. Per-
formance guaranteed network acceleration via high-
order residual quantization. In Proc. IEEE Int. Conf.
Comp. Vis., pages 2584–2592, 2017. 3, 8, 10

[30] X. Lin, C. Zhao, and W. Pan. Towards accurate
binary convolutional neural network. In Proc. Adv.
Neural Inf. Process. Syst., pages 344–352, 2017. 3,
7, 8, 9, 10

[31] C. Liu, B. Zoph, J. Shlens, W. Hua, L.-J. Li, L. Fei-
Fei, A. Yuille, J. Huang, and K. Murphy. Progres-
sive neural architecture search. In Proc. Eur. Conf.
Comp. Vis., 2018. 3, 13

[32] H. Liu, K. Simonyan, O. Vinyals, C. Fernando, and
K. Kavukcuoglu. Hierarchical representations for ef-
ficient architecture search. In Proc. Int. Conf. Learn.
Repren., 2018. 3

[33] H. Liu, K. Simonyan, and Y. Yang. Darts:
Differentiable architecture search. arXiv preprint
arXiv:1806.09055, 2018. 13

[34] Z. Liu, B. Wu, W. Luo, X. Yang, W. Liu, and K.-T.
Cheng. Bi-real net: Enhancing the performance of
1-bit cnns with improved representational capabil-
ity and advanced training algorithm. In Proc. Eur.
Conf. Comp. Vis., 2018. 3, 4, 8, 9

[35] J. Long, E. Shelhamer, and T. Darrell. Fully con-
volutional networks for semantic segmentation. In
Proc. IEEE Conf. Comp. Vis. Patt. Recogn., pages
3431–3440, 2015. 1, 10, 13

[36] A. Mishra and D. Marr. Apprentice: Using knowl-
edge distillation techniques to improve low-precision
network accuracy. In Proc. Int. Conf. Learn.
Repren., 2018. 1, 7, 8, 13

[37] A. Paszke, S. Gross, S. Chintala, G. Chanan,
E. Yang, Z. DeVito, Z. Lin, A. Desmaison, L. Antiga,
and A. Lerer. Automatic differentiation in pytorch.
In Proc. Adv. Neural Inf. Process. Syst. Workshops,
2017. 8

[38] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and
J. Dean. Efficient neural architecture search via pa-
rameter sharing. In Proc. Int. Conf. Mach. Learn.,
2018. 2, 3, 13

[39] A. Polino, R. Pascanu, and D. Alistarh. Model com-
pression via distillation and quantization. In Proc.
Int. Conf. Learn. Repren., 2018. 1

[40] M. Rastegari, V. Ordonez, J. Redmon, and
A. Farhadi. Xnor-net: Imagenet classification us-
ing binary convolutional neural networks. In Proc.
Eur. Conf. Comp. Vis., pages 525–542, 2016. 1, 3,
4, 8, 9

[41] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi.
You only look once: Unified, real-time object detec-
tion. In Proc. IEEE Conf. Comp. Vis. Patt. Recogn.,
pages 779–788, 2016. 1

[42] S. Ren, K. He, R. Girshick, and J. Sun. Faster r-
cnn: Towards real-time object detection with region
proposal networks. In Proc. Adv. Neural Inf. Process.
Syst., pages 91–99, 2015. 1

[43] O. Russakovsky, J. Deng, H. Su, J. Krause,
S. Satheesh, S. Ma, Z. Huang, A. Karpathy,
A. Khosla, M. Bernstein, et al. Imagenet large scale
visual recognition challenge. Int. J. Comp. Vis.,
115(3):211–252, 2015. 8

[44] M. Sandler, A. Howard, M. Zhu, A. Zhmoginov, and
L.-C. Chen. Mobilenetv2: Inverted residuals and lin-
ear bottlenecks. In Proc. IEEE Conf. Comp. Vis.
Patt. Recogn., pages 4510–4520, 2018. 3

[45] C. Szegedy, S. Ioffe, V. Vanhoucke, and A. A. Alemi.
Inception-v4, inception-resnet and the impact of
residual connections on learning. In Proc. AAAI
Conf. on Arti. Intel., volume 4, page 12, 2017. 3

[46] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed,
D. Anguelov, D. Erhan, V. Vanhoucke, and A. Ra-
binovich. Going deeper with convolutions. In Proc.
IEEE Conf. Comp. Vis. Patt. Recogn., pages 1–9,
2015. 3

[47] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and
Z. Wojna. Rethinking the inception architecture for
computer vision. In Proc. IEEE Conf. Comp. Vis.
Patt. Recogn., pages 2818–2826, 2016. 3

[48] W. Tang, G. Hua, and L. Wang. How to train a
compact binary neural network with high accuracy?

18



In Proc. AAAI Conf. on Arti. Intel., pages 2625–
2631, 2017. 3, 8, 10

[49] Y. Umuroglu, N. J. Fraser, G. Gambardella,
M. Blott, P. Leong, M. Jahre, and K. Vissers.
Finn: A framework for fast, scalable binarized neu-
ral network inference. In Proceedings of the 2017
ACM/SIGDA International Symposium on Field-
Programmable Gate Arrays, pages 65–74. ACM,
2017. 9

[50] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He.
Aggregated residual transformations for deep neural
networks. In Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., pages 5987–5995, 2017. 12

[51] H. Yang, M. Fritzsche, C. Bartz, and C. Meinel.
Bmxnet: An open-source binary neural network im-
plementation based on mxnet. In Proc. of the ACM
Int. Conf. on Multimedia., pages 1209–1212. ACM,
2017. 9

[52] D. Zhang, J. Yang, D. Ye, and G. Hua. Lq-nets:
Learned quantization for highly accurate and com-
pact deep neural networks. In Proc. Eur. Conf.
Comp. Vis., 2018. 1, 7, 8, 9, 10, 14

[53] X. Zhang, X. Zhou, M. Lin, and J. Sun. Shufflenet:
An extremely efficient convolutional neural network
for mobile devices. In Proc. IEEE Conf. Comp. Vis.
Patt. Recogn., 2018. 2, 3

[54] A. Zhou, A. Yao, Y. Guo, L. Xu, and Y. Chen. Incre-
mental network quantization: Towards lossless cnns
with low-precision weights. Proc. Int. Conf. Learn.
Repren., 2017. 8

[55] S. Zhou, Y. Wu, Z. Ni, X. Zhou, H. Wen, and
Y. Zou. Dorefa-net: Training low bitwidth convolu-
tional neural networks with low bitwidth gradients.
arXiv preprint arXiv:1606.06160, 2016. 1, 3, 7, 8, 9,
10, 14

[56] C. Zhu, S. Han, H. Mao, and W. J. Dally. Trained
ternary quantization. Proc. Int. Conf. Learn.
Repren., 2017. 8

[57] B. Zhuang, C. Shen, M. Tan, L. Liu, and I. Reid.
Towards effective low-bitwidth convolutional neural
networks. In Proc. IEEE Conf. Comp. Vis. Patt.
Recogn., 2018. 1, 3, 7, 8, 13

[58] B. Zoph and Q. V. Le. Neural architecture search
with reinforcement learning. In Proc. Int. Conf.
Learn. Repren., 2017. 2, 3, 13

[59] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le.
Learning transferable architectures for scalable im-
age recognition. In Proc. IEEE Conf. Comp. Vis.
Patt. Recogn., 2018. 2, 3, 13

19


