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Abstract— Recently, low-rank representation (LRR) has shown
promising performance in many real-world applications such
as face clustering. However, LRR may not achieve satisfactory
results when dealing with the data from nonlinear subspaces,
since it is originally designed to handle the data from linear
subspaces in the input space. Meanwhile, the kernel-based
methods deal with the nonlinear data by mapping it from the
original input space to a new feature space through a kernel-
induced mapping. To effectively cope with the nonlinear data,
we first propose the kernelized version of LRR in the clean data
case. We also present a closed-form solution for the resultant
optimization problem. Moreover, to handle corrupted data, we
propose the robust kernel LRR (RKLRR) approach, and develop
an efficient optimization algorithm to solve it based on the
alternating direction method. In particular, we show that both
the subproblems in our optimization algorithm can be efficiently
and exactly solved, and it is guaranteed to obtain a globally
optimal solution. Besides, our proposed algorithm can also solve
the original LRR problem, which is a special case of our RKLRR
when using the linear kernel. In addition, based on our new
optimization technique, the kernelization of some variants of
LRR can be similarly achieved. Comprehensive experiments on
synthetic data sets and real-world data sets clearly demonstrate
the efficiency of our algorithm, as well as the effectiveness of
RKLRR and the kernelization of two variants of LRR.

Index Terms— Low-rank representation (LRR), kernel
methods.

I. INTRODUCTION

CLUSTERING is one of the essential tasks in machine
learning and data mining. In particular, given data sam-

pled from a union of subspaces, subspace clustering [2]–[5]
is to partition data into several clusters, so that each cluster
corresponds to one subspace. The existing subspace clustering
methods can be roughly classified into the following four cate-
gories: 1) iterative approaches [6]; 2) statistical approaches [7];
3) algebraic approaches [8]; and 4) spectral clustering-based
approaches [1], [9]–[11]. In particular, the spectral clustering-
based approaches first seek a desired affinity matrix containing
pairwise affinities between all data points, and then apply spec-
tral clustering (e.g., NCut [12]) on it to obtain the clustering
result.
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Among these spectral clustering-based approaches, both
sparse subspace clustering (SSC) [10] and low-rank represen-
tation (LRR) [1] seek a desired affinity matrix by learning
a data representation matrix. In particular, they both use the
self-expressiveness property of data (i.e., each data point in a
union of subspaces can be efficiently represented as a linear
combination of other points). In particular, SSC seeks a sparse
representation of data [13]. However, as mentioned in [1],
SSC may not accurately capture the global structures of
data, especially when data are grossly corrupted. To capture
the global structures of data, LRR [1] encourages the data
representation matrix to be low rank. LRR has shown promis-
ing performance in different applications [14], and many
variants [15] of LRR have been proposed.

LRR [1] is originally proposed to deal with the data from
multiple linear subspaces on the input space [16], and it
may not achieve satisfactory results when dealing with the
data from nonlinear subspaces [Fig. 1(a) and (b)]. Using
kernel-induced mapping [17] to map the data from the original
input space to a feature space [16], the mapped data in
the feature space may reside in multiple linear subspaces.
In this paper, we propose a new kernelized version of LRR
to deal with such data. In particular, we provide a closed-
form solution regarding the kernelized version of LRR for
handling clean data. Moreover, to facilitate the kernelization
of LRR for dealing with corrupted data, we first rewrite the
optimization problem of LRR in a new form, where the data
matrix X appears only in the form of inner product (i.e., X′X).
Based on this new form, we propose the robust kernel
LRR (RKLRR) method, which essentially performs LRR in
the new feature space, with the �2,1 norm regularization [1]
on the representation error in order to make the RKLRR robust
to outliers.

To solve the optimization problem of RKLRR with a
convex but nonsmooth objective function, we adopt the
alternating direction method (ADM) with two blocks of
variables [18]–[20], which is theoretically guaranteed to
achieve the global optimum. In particular, we provide the
closed-form solution for one challenging subproblem (i.e., the
one with respect to the �2,1 norm), such that both the subprob-
lems can be efficiently and exactly solved. Note that LRR is
a special case of our RKLRR when using the linear kernel.
As a result, our algorithm is also suitable for solving the
original LRR problem. In particular, it can well address the
convergence issues of the existing solvers in [18] and [21] for
solving the original LRR problem. In particular, the algorithm
in [21] is not theoretically guaranteed to achieve the global
optimum. Although the algorithm in [18] is proved to converge
in theory, the total number of iterations of this method may
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Fig. 1. Comparison between the original LRR and our proposed kernelized version of LRR for nonlinear subspace clustering. (a) Data {xi }ni=1 in the original
input space. (b) Minimizer Z∗ of the problem in (1). The corresponding clustering error (see Section VI for the definition) is ∼30%. (c) Data {φ(xi )}ni=1 in
the feature space. Here, we define φ(x) as φ(x) = arctan(x), i.e., the arctan operation is performed on evey entry of x. (d) Minimizer Z∗ of the problem in (8).
The corresponding clustering error is 0. This figure is best viewed in color.

be relatively large in practice (see Sections II and VI-A for
more details).

Our major contributions are summarized as follows.
1) We first present the nonlinear version of LRR for han-

dling clean data, and provide the closed-form solution
for it. Moreover, we also propose RKLRR, which is
a kernelized version of LRR to handle corrupted data.
In addition, we show that many variants of LRR (such as
nonnegative low rank and sparse (NNLRS) graph [15])
with the �2,1 norm-based regularization on the represen-
tation error can be kernelized in a similar way.

2) Based on the ADM, we develop a new optimization
algorithm to solve the optimization problem of RKLRR.
By providing the analytical solution for the subproblem
with respect to the �2,1 norm, we efficiently solve both
the resultant subproblems in closed form. In particu-
lar, our algorithm can be used to solve the original
LRR problem. Our algorithm usually converges in less
number of iterations, when compared with the existing
LRR solvers in [18] and [21]. In addition, it is especially
efficient when the feature dimension is high.

3) The experimental results on synthetic data sets demon-
strate the efficiency of our algorithm for solving the
original LRR problem, when compared with the existing
LRR solvers in [18] and [21]. The comprehensive exper-
imental results for different real-world tasks (i.e., face
clustering and human activity clustering) clearly show
the effectiveness of our RKLRR and the kernel versions
of two variants of LRR.

The rest of this paper is organized as follows. We discuss
the related works in Section II and introduce our formulations
in Section III. In Section IV, our algorithm is presented, and
its efficiency and the convergence property are also discussed.
Moreover, we discuss the extensions of our kernelization
technique to some variants of LRR in Section V. Finally,
the experimental results are reported in Section VI, and the
conclusion remarks are provided in Section VII.

II. RELATED WORK

Notations: In the remainder of this paper, we use the low-
ercase/uppercase letter in boldface to denote a vector/matrix
(e.g., a denotes a vector, and A denotes a matrix). The
corresponding nonbold letter with a subscript denotes the entry
in a vector/matrix (e.g., ai denotes the i th entry of the vector a,

and Aij denotes an entry at the i th row and the j th column
of the matrix A). The superscript ′ denotes the transpose of
a vector or a matrix. Let In denote the n × n identity matrix,
and let Om×n denote the m × n zero matrix. Let 0n ∈ R

n

(respectively, 1n ∈ R
n) denote the column vector, where all

the elements are zeros (ones). For simplicity, I, 0, and 1 are
used when the dimension is obvious.

Let ‖A‖∗ denote the nuclear norm [22], [23] of A. Let tr(A)
denote the trace of A (i.e., tr(A) = ∑

i Ai,i ), and let 〈A,B〉
denote the inner product of A and B (i.e., 〈A,B〉 = tr(A′B)).
‖A‖2,1 = ∑n

i=1 ‖ai‖ is the �2,1 norm of A, where ai is the
i th column of A and ‖a‖ is the �2 norm of a. The max norm
‖A‖∞ of A is defined as ‖A‖∞ = maxi, j |Aij |. A ≥ 0 means
that all the elements in A are nonnegative. For a,b ∈ R

n , the
inequality a ≤ b indicates that ai ≤ bi∀i = 1, . . . , n. We use
diag(a) or diag({ai }1≤i≤n) to denote a diagonal matrix, where
a ∈ R

n contains all the diagonal elements. Finally, let the
operator ◦ denote the elementwise product (also called the
Hadamard product) between two vectors, i.e., a ◦ b is a new
vector with its i th element as aibi .

First, we give a brief review of LRR. Suppose that we are
given a data matrix X ∈ R

d×n containing n data points drawn
from multiple subspaces, where d is the feature dimension.
LRR seeks a low-rank representation Z ∈ R

n×n by minimizing
‖Z‖∗, subject to the constraint that the data are self-expressive
(i.e., X = XZ). Mathematically, for the LRR in the clean data
case, the optimization problem [1] is as follows:

min
Z
‖Z‖∗ s.t. X = XZ. (1)

However, the real-world data often contain noise. To deal
with grossly corrupted data, the following convex optimization
problem is proposed for the LRR in the corrupted data
case [1]:

min
Z,E
‖Z‖∗ + λ‖E‖2,1, s.t. X = XZ+ E (2)

where λ is a positive tradeoff parameter, and ‖E‖2,1 encour-
ages the columnwise sparsity for the representation error
E ∈ R

d×n . In the real-world applications, such as face
clustering, some data points may be corrupted (e.g., faces may
be occluded by scarves), so the �2,1 norm loss is particularly
important for handling the outliers [1], [11], [21], and it is
also widely used in many variants of LRR [15].
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However, the optimization problem in (2) is difficult to be
addressed by directly using the ADM [18]–[20]. To be exact,
if we directly apply the ADM, the resultant optimization pro-
cedure will involve a nuclear-norm regularized optimization
problem in the following form:

min
Z
‖Z‖∗ + ν

2
‖XZ− B‖2F (3)

where both the scalar ν and the matrix B are irrelevant to Z.
However, it is a nontrivial task to solve the optimization
problem (3). Therefore, the works in [18] and [21] attempt
to address this issue using their own strategies.

In particular, Liu et al. [21] introduced an additional vari-
able J = Z into problem (2). Let us use the ADM with
three blocks (ADM3B) to denote this algorithm. However,
ADM3B is not theoretically guaranteed to obtain the global
optimum [18], [24]. Moreover, it may require more memory
and iterations, as mentioned in [18].

To address the convergence issue of ADM3B,
Lin et al. [18] proposed the linearized ADM with adaptive
penalty (LADMAP), without introducing one additional
variable. In particular, to avoid solving the subproblem
in the form of (3), the approximation is performed by
replacing the squared Frobenius norm with a linear term
plus a proximal term. LADMAP is theoretically proved to
achieve the global optimum, under the assumption that all
subproblems are exactly solved. However, possibly due to the
approximation [18], the number of iterations is sometimes
large when using LADMAP (see Section VI-A).

LRR is designed to handle the data from a union of
subspaces in the original input space, so it may not effectively
cope with the data sampled from nonlinear input spaces. More-
over, we cannot directly kernelize the optimization problem (2)
for LRR, because the kernel trick cannot be readily used when
the data do not only appear in the form of inner products [25]
(i.e., x′ix j ). While the work in [26] attempts to kernelize LRR,
the proposed structural similarity and distance in learning
(SSDL) method adopts the Frobenius norm to replace the �2,1
norm for regularizing the representation error. Consequently,
SSDL is not robust to outliers. Our experimental results
for several real-world applications also demonstrate that our
proposed RKLRR method generally outperforms SSDL (see
Section VI). Recently, a fast LRR solver called FaLRR [27]
was proposed by reformulating LRR with factorized data.
However, the reformulation idea cannot be directly applied for
many variants of LRR (e.g., NNLRS [15]) and their kernelized
versions.

III. FORMULATIONS

Definitions: For the given data {xi}ni=1 in the input space,
where xi ∈ R

d , ∀i = 1, . . . , n, we define X ∈ R
d×n as

X = [x1, . . . , xn]. Following the existing kernel-based meth-
ods, such as [28] and [29], let K ∈ R

n×n denote the kernel
matrix, and let ker(x, y) denote the kernel function. In partic-
ular, the (i, j)th element of K, namely, Kij , is calculated as
follows:

Kij = ker(xi , x j ) ∀i, j = 1, . . . , n. (4)

Without loss of generality, we assume that the kernel matrix
is symmetric and positive semidefinite. According to [16], the
kernel function ker(x, y) induces a mapping φ: R

d → F
(the new space F is referred to as the feature space [16]).
Namely, for any x, y ∈ Rd , we have

ker(x, y) = φ(x)′φ(y). (5)

Let us define �(X) as �(X) = [φ(x1), . . . , φ(xn)], so that we
have

K = �(X)′�(X). (6)

Besides, let rK denote the rank of K, where 0 ≤ rK ≤ n.
Considering that K is symmetric and positive semidefinite,
we can use singular value decomposition (SVD) to decompose
it in the form of

K = V�2V′ (7)

where V ∈ R
n×n is an orthogonal matrix

(i.e., VV′ = V′V = In), and the diagonal matrix � ∈ R
n×n

is defined as � = diag([σ1, . . . , σrK , 0, . . . , 0]′), with the
scalars {σ 2

i }rK
i=1 being the positive singular values of K, which

are sorted in descending order.

A. Clean Data Case

When the given data {xi }ni=1 are from multiple nonlin-
ear subspaces, as shown in Fig. 1,1 the minimizer Z∗ for
problem (1) may not well represent the relations between
the given data. With the introduction of the kernel function
which induces the mapping φ, {φ(xi )}ni=1 may lie in multiple
linear subspaces on the new feature space, as illustrated
in Fig. 1.

Based on the assumption that {φ(xi)}ni=1 resides in multiple
linear subspaces, we propose the following nonlinear version
of LRR in the clean data case:

min
Z
‖Z‖∗, s.t. �(X) = �(X)Z. (8)

We show that problem (8) can be solved analytically and
the closed-form solution is determined by the kernel matrix K.
In particular, we have the following theorem based on the
above-mentioned definitions in (4)–(7).

Theorem 1: VK V′K is the optimal solution of problem (8),
where VK ∈ R

n×rK is obtained by using the first rK columns
of V.

The proof of Theorem 1 is provided in Appendix A.
As shown in Fig. 1, the membership between the
given data is clearly discovered by the minimizer
of (8).

B. Corrupted Data Case

We first reformulate problem (2) as a new constrained
optimization problem. Based on the new formulation,
we propose our RKLRR method. To be exact, different
from [18] and [21], we first equivalently convert the prob-
lem in (2) into an unconstrained problem in (9). After that,

1The MATLAB code for generating the toy data is available at
https://www.dropbox.com/s/5ol4p4mljzt6aob/GenerateToyData.m?dl=0.
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we introduce a new variable and further convert the problem
into a new constrained optimization problem (10), based on
which we arrive at our RKLRR.

First, the equality constraint in (2) can be equivalently
rewritten as E = X−XZ. Therefore, the LRR problem (2) is
equivalent to the following one:

min
Z
‖Z‖∗ + λ‖X − XZ‖2,1. (9)

By defining a new variable P = I − Z ∈ R
n×n , we can

rewrite ‖X − XZ‖2,1 in (9) as ‖X − XZ‖2,1 = ‖XP‖2,1 =∑n
i=1 ‖Xpi‖ = ∑n

i=1 (p
′
i X
′Xpi )

1/2, where P = [p1, . . . ,pn],
and pi ∈ R

n denotes the i th column of P, ∀i = 1, . . . , n.
Accordingly, the problem in (9) can be rewritten as

min
Z,P
‖Z‖∗ + λ

n∑

i=1

√
p′i X′Xpi

s.t. P = I− Z. (10)

Apparently, after converting the LRR problem in (2) into
the formulation in (10), the data {xi }ni=1 now only appear in
the form of inner product (i.e., x′i x j ), in the term X′X. As a
result, the kernelization can be easily performed.

In particular, we arrive at the following nonlinear version
of LRR by replacing X in (9) with �(X):

min
Z
‖Z‖∗ + λ‖�(X)−�(X)Z‖2,1. (11)

By defining a function g(P) with respect to P ∈ R
n×n as

g(P) �
n∑

i=1

√
p′i Kpi (12)

where pi ∈ R
n denotes the i th column of P, ∀i = 1, . . . , n,

we can equivalently rewrite (11) as the following RKLRR
problem:

min
Z,P
‖Z‖∗ + λg(P) (13)

s.t. P = I− Z

where the kernel matrix K is contained in g(P). Note that,
when using the linear kernel K = X′X, the RKLRR problem
in (13) is reduced to the form in (10), so LRR is a special
case of RKLRR when using the linear kernel.

IV. OPTIMIZATION

In this paper, we propose to solve problem (13) using
the ADM [18]–[20] with two blocks of variables (namely,
Z and P). In particular, we introduce the Lagrange multiplier

L ∈ R
n×n and operate on the augmented Lagrange function

L(Z,P,L) as follows:
L(Z,P,L)

= ‖Z‖∗ + λg(P)+ 〈L, I − Z− P〉 + ρ
2
‖I − Z− P‖2F

= ‖Z‖∗ + λg(P)+ ρ
2

∥
∥
∥
∥I − Z− P + L

ρ

∥
∥
∥
∥

2

F
− ‖L‖

2
F

2ρ

where ρ is a positive penalty parameter.

Algorithm 1 Proposed Algorithm for Solving RKLRR
Input: λ, the SVD of K.
Initialize P0 as I, and initialize Z0,L0 as On×n .
(ρ0, ρmax ,
ρ, ε, Niter )← (0.5, 106, 0.1, 10−5, 106).
for t = 0 : Niter do

1. Zt+1 ← arg minZ L(Z,Pt ,Lt ).
2. Pt+1← arg minP L(Zt+1,P,Lt ).
3. Lt+1 ← Lt + ρt (I − Zt+1 − Pt+1).
4. ρt+1 ← min(ρt (1+
ρ), ρmax ).
5. Break if ‖I − Zt+1 − Pt+1‖∞ ≤ ε.

end for
Output: the data representation Z∗ = Zt+1.

The details of our algorithm for solving the RKLRR are
summarized in Algorithm 1. As shown in Algorithm 1, at the
t th iteration, we alternatively update Zt+1, Pt+1, Lt+1, and
ρt+1 until the convergence condition is satisfied. The updating
steps for Lt+1 and ρt+1 are similar to those in [1], as shown
in Algorithm 1 (see the third and fourth steps in the loop).
Therefore, we only detail the first two steps for updating Zt+1
and Pt+1, which are also the main steps at each iteration.
In particular, it is more challenging to update Pt+1.

In particular, the optimization problem for updating Zt+1,
i.e., minZ L(Z,Pt ,Lt ), can be detailed as follows:

min
Z
‖Z‖∗ + ρt

2
‖Z− (I − Pt + Lt/ρt )‖2F (14)

in which we have dropped the terms that are irrelevant to Z.
This subproblem can be solved in closed-form using the
singular value shrinkage operator [30, Th. 2.1].

Moreover, the optimization problem for updating Pt+1,
i.e., minP L(Zt+1,P,Lt ), can be written as follows:

min
P

λg(P)+ ρt

2
‖P− Ct+1‖2F (15)

where Ct+1 = I − Zt+1 + Lt/ρt , and we have dropped the
terms that are irrelevant to P.

Note that it is nontrivial to solve the problem in (15),
where the objective function is convex but nonsmooth. Nev-
ertheless, in this paper, we show that it can be solved
analytically.

Hereafter, we drop the subscripts in Ct+1 for ease of
presentation. Moreover, by defining ci (respectively, pi ) as the
i th column of C (respectively, P) and scalar τ as τ � (ρt/λ),
we have (ρt/2)‖P − C‖2F = λ((τ/2)

∑n
i=1 ‖pi − ci‖2). After

dividing the objective by λ, we can equivalently rewrite the
problem in (15) as follows:

min
{pi }ni=1

n∑

i=1

√
p′i Kpi + τ

2

n∑

i=1

‖pi − ci‖2. (16)

Note that the optimization problem (16) is separable with
respect to pi ’s, so it can be decomposed into n subproblems,
and each subproblem is in the following form:

min
pi

√
p′i Kpi + τ2 ‖pi − ci‖2. (17)

Before introducing the analytical solution of (17)
in Theorem 2, we first provide the following lemma.
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Lemma 1: Given a positive scalar τ , a constant vector
h ∈ R

q , with q being a positive integer, and a diagonal matrix
S = diag({si }1≤i≤q) ∈ R

q×q , with {si }qi=1 being positive
scalars sorted in descending order, the optimal solution p∗
for the following problem:

min
p∈Rq

√

p′S2p+ τ
2
‖p− h‖2 (18)

is given by

p∗ =
⎧
⎨

⎩

(
S2

τα + I
)−1

h, if ‖S−1h‖ > 1
τ

0q , otherwise
(19)

where S−1 = diag({s−1
i }1≤i≤q), and α > 0 satisfies

h′diag

⎛

⎝

{
s2

i

(τα + s2
i )

2

}

1≤i≤q

⎞

⎠ h = 1

τ 2 . (20)

In particular, when ‖S−1h‖ > 1/τ , (20) (with respect to α)
has exactly one positive root, which can be obtained by the
bisection method [31].

The proof of Lemma 1 is provided in Appendix B. Based
on Lemma 1, we have the following theorem.

Theorem 2: The optimal solution p∗i of problem (17)
(where τ > 0) is

p∗i =
{

p̂, if ‖ [ 1
σ1
, . . . , 1

σrK
]′ ◦ h̃u‖ > 1

τ

ci − VK h̃u, otherwise
(21)

in which h̃u = V′K ci ∈ R
rK , where VK ∈ R

n×rK is formed
by the first rK columns of V, and the vector p̂ is defined as

p̂ = ci − VK

( [
σ 2

1

τα + σ 2
1

, . . . ,
σ 2

rK

τα + σ 2
rK

]′
◦ h̃u

)

(22)

where α is a positive scalar, satisfying

h̃′udiag

({
σ 2

i

(τα + σ 2
i )

2

}

1≤i≤rK

)

h̃u = 1

τ 2 . (23)

In particular, when ‖[1/σ1, . . . , 1/σrK ]′ ◦ h̃u‖ > 1/τ , the
equation in (23) (with respect to α) has a unique positive root,
which can be obtained by the bisection method [31].

Proof: By substituting K = V�2V′ into (p′i Kpi )
1/2

[i.e., the first term in the objective function of (17)], we arrive
at

√
p′i Kpi =

√
p′i V�2V′pi =

√

(V′pi )′�2(V′pi ). (24)

On the other hand, since VV′ = I, we have

‖pi − ci‖2 = ‖V′(pi − ci )‖2 = ‖V′pi − V′ci‖2. (25)

Note that, in (24) and (25), the variable pi only appears
in V′pi , and the term V′ci in (25) is constant with respect
to pi . Therefore, by defining a new variable p̃ = V′pi and a
constant vector

h̃ = V′ci (26)

we reformulate the optimization problem (17) as the following
equivalent one:

min
p̃

√

p̃′�2p̃+ τ
2
‖p̃− h̃‖2. (27)

Let p̃∗ denote the optimal solution of the problem in (27).
Since VV′ = I, we have pi = Vp̃ for any p̃ = V′pi . Therefore,
once we obtain p̃∗, the optimal solution p∗i of the problem in
(17) can be obtained by

p∗i = Vp̃∗. (28)

Now, let us discuss how to obtain p̃∗. Note that � is a
diagonal matrix, where the last n − rK diagonal elements are
all zeros, so we express the variable p̃ ∈ R

n as p̃ = [p̃′u, p̃′d ]′,
where p̃u ∈ R

rK and p̃d ∈ R
(n−rK ). Similarly, let us split

h ∈ R
n into two vectors h̃u ∈ R

rK and h̃d ∈ R
(n−rK ), that is

h̃ = [h̃′u, h̃′d ]′. (29)

According to (26), we can write h̃u and h̃d as follows:
h̃u = [IrK ,OrK×(n−rK )]V′ci = V′K ci (30)

h̃d = [O(n−rK )×rK , I(n−rK )]V′ci . (31)

Moreover, we define a diagonal matrix �u ∈ R
rK×rK as

�u = diag({σi }1≤i≤rK ). (32)

With these definitions, we equivalently rewrite (27) as

min
p̃u,p̃d

(√

p̃′u�u
2p̃u + τ

2
‖p̃u − h̃u‖2

)

+
(τ

2
‖p̃d − h̃d‖2

)

where the objective function is separable with respect to
p̃u and p̃d . Let (p̃∗u , p̃∗d ) denote the optimal solution to the
above-mentioned optimization problem. Accordingly, p̃∗ can
be written as

p̃∗ = [(p̃∗u)′, (p̃∗d )′]′. (33)

It is obvious that

p̃∗d = h̃d (34)

and p̃∗u is an optimal solution to the following problem:

min
p̃u

√

p̃′u�u
2p̃u + τ

2
‖p̃u − h̃u‖2. (35)

Note that (35) is exactly in the form of (18) in Lemma 1.
According to Lemma 1, p̃∗u is given by

p̃∗u =

⎧
⎪⎨

⎪⎩

(
�u

2

τα + I
)−1

h̃u , if ‖�−1
u h̃u‖ > 1

τ

0rK , otherwise

(36)

where α is a positive scalar, satisfying the equation in (23).
In particular, when ‖�−1

u h̃u‖ > 1/τ , the equation in (23)
(with respect to α) has exactly one positive root, which can
be obtained by the bisection method [31].
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Given (28), (33), and (34), we have p∗i = V[(p̃∗u)′, h̃′d ]′.
By substituting (36) into the equation, we arrive at

p∗i =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

V

⎡

⎣

(
�u

2

τα + I
)−1

h̃u

h̃d

⎤

⎦, if ‖�−1
u h̃u‖ > 1

τ

V

[
0rK

h̃d

]

, otherwise.

(37)

Now, to complete the proof of Theorem 2, the remaining tasks
are to verify the following three equalities:

�−1
u h̃u =

[
1

σ1
, . . . ,

1

σrK

]′
◦ h̃u (38)

V

[(
�u

2

τα + I
)−1

h̃u

h̃d

]

= p̂ (39)

V
[

0rK

h̃d

]

= ci − VK h̃u . (40)

Let us verify them as follows. First, the equality in (38) can
be easily verified based on the definition of �u in (32).

Besides, we can prove (39) and (40) based on the following
property. For any a = [a1, . . . , arK ]′ ∈ R

rK , we have

Vdiag([a′, 1′n−rK
]′)V′ci

= ci − VK diag({1− ai }1≤i≤rK )V
′
K ci (41)

= ci − VK diag({1− ai }1≤i≤rK )h̃u (42)

where the equality in (41) can be verified, since VV′ = In

and [a′, 1′n−rK
]′ = 1n−[(1rK −a)′, 0′n−rK

]′, while the equality
in (42) holds based on (30) and the definition of VK .

In fact, (39) can be obtained based on the
above-mentioned property, by replacing a with
[τα/(τα + σ 2

1 ), . . . , τα/(τα + σ 2
rK
)]′. In particular, for

the equality in (39), its left-hand side can be rewritten as
Vdiag([[τα/(τα + σ 2

1 ), . . . , τα/(τα + σ 2
rK
)]′, 1′n−rK

]′)V′ci ,
based on the equality (�u

2/(τα) + I)−1 =
diag({τα/(τα + σ 2

i )}1≤i≤rK ) and the equalities
in (30) and (31). Moreover, the right-hand side of the
equality in (39), namely, p̂ defined in (22), can be written
as ci − VK diag({1 − (τα)/(τα + σ 2

i )}1≤i≤rK )h̃u . Based
on the above-mentioned property, we can conclude that
Vdiag([[τα/(τα + σ 2

1 ), . . . , τα/(τα + σ 2
rK
)]′, 1′n−rK

]′)V′ci

is equal to ci − VK diag({1 − (τα)/(τα + σ 2
i )}1≤i≤rK )h̃u , so

that (39) is obtained.
We can also obtain (40) based on the above-mentioned

property, by replacing a with 0rK . In particular, the left-hand
side of (40) is equal to Vdiag([0′rK

, 1′n−rK
]′)V′ci based on (31),

which can be rewritten as ci −VK diag(1rK −0rK )h̃u based on
the above-mentioned property. Note that we can easily rewrite
ci−VK diag(1rK−0rK )h̃u as the right-hand side of (40), so (40)
is obtained.

This completes the proof of Theorem 2. �
Now, let us discuss the efficiency and the convergence of

Algorithm 1.

A. Efficiency

It is worth mentioning that, when the linear kernel K = X′X
is used, Algorithm 1 can be readily used to solve the original
LRR problem. In particular, when using Algorithm 1 to solve
the original LRR problem, we can directly obtain the SVD of
the linear kernel K = X′X based on the SVD of X, without
calculating K explicitly. In particular, after calculating the
SVD of X (i.e., X = UX SX V′X ) with O(ndl) time complexity,
where l = min(n, d), we can readily obtain the SVD of K as
K = VX S2

X V′X . Note that S2
X can be simply calculated in an

elementwise way, because SX is a diagonal matrix.
Now, let us discuss the efficiency of our Algorithm 1, as well

as the existing algorithms LADMAP and ADM3B, for solving
the original LRR problem. Generally speaking, the efficiency
of an iterative algorithm is determined by the total number of
iterations, as well as the time complexity at each iteration. For
the total number of iterations, we experimentally demonstrate
that our Algorithm 1 usually converges after fewer number of
iterations than the two existing algorithms ADM3B [21] and
LADMAP [18] (see Section VI-A for more details).

Regarding the computational complexity at each iteration,
we need to update Zt+1 and Pt+1, which leads to the main
cost of Algorithm 1. When updating Zt+1, one can perform
singular value shrinkage [30] through partial SVD similarly
as in [18], with O(rn2) time complexity, where r is the
rank for partial SVD at an iteration. When updating Pt+1,
we need to solve n subproblems in the form of (17), where
the time complexity of each subproblem is O(rX n) due to
the matrix–vector multiplication in Theorem 2, where rX is
the rank of X. Therefore, the complexity of this process is
O(rX n2). Thus, at each iteration, the complexity of Algo-
rithm 1 is O((rX + r)n2). In contrast, the time complexity
of LADMAP at each iteration is O(r̂ nd + r̂ n2), where r̂ is
the predicted rank of Z at an iteration of LADMAP. The time
complexity of ADM3B at each iteration is at most O(ndl +
nl2) [21], where l = min(n, d). Nevertheless, ADM3B is
not theoretically guaranteed to obtain the global optimum
[18], [24]. Note that the complexity of our Algorithm 1 is
irrelevant to d as long as the SVD of K (or X) is given,
so it is especially suitable for handling high-dimensional data
with d � n.

B. Convergence

Based on [18]–[20], we have the following theorem regard-
ing the convergence of Algorithm 1.

Theorem 3: The sequence {(Zt ,Pt ,Lt )} generated by
Algorithm 1 converges to an accumulation point. In partic-
ular, we have ‖Zt+1 − Zt‖F → 0, ‖Pt+1 − Pt‖F → 0,
and ‖Lt+1 − Lt‖F → 0. Moreover, the accumula-
tion point is an optimal solution of the optimization
problem (13).

In contrast, ADM3B [1] is not theoretically guaranteed
to achieve the global optimum. Regarding LADMAP [18],
although it is theoretically proved to achieve the global opti-
mum based on the assumption that its subproblems are solved
exactly, its total number of iterations may be larger than that
of our Algorithm 1 (see Section VI-A for details).
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Algorithm 2 Algorithm for Solving RKNNLRS
Input: λ, β, the SVD of K.
Initialize P0 as I and initialize Z0,W0,L0,U0 as On×n .
(ρ0, ρmax ,
ρ, ε, Niter )← (0.5, 106, 0.1, 10−5, 106).
for t = 0 : Niter do

1. Zt+1← arg minZ L(Z,Pt ,Wt ,Lt ,Ut ).
2. Pt+1← arg minP L(Zt+1,P,Wt ,Lt ,Ut ).
3. Wt+1← Sβ/ρt (Zt+1 − Ut

ρt
), and set the negative elem-

ents in Wt+1 to zeros.
4. Lt+1← Lt + ρt (I − Zt+1 − Pt+1),

Ut+1 ← Ut + ρt (Wt+1 − Zt+1).
5. ρt+1← min(ρt (1+
ρ), ρmax ).
6. Break if the conditions ‖I − Zt+1 − Pt+1‖∞ ≤ ε and
‖Wt+1 − Zt+1‖∞ ≤ ε are both satisfied.

end for
Output: the data representation Z∗ = Zt+1.

V. EXTENSIONS

Generally speaking, our reformulation and kernelization
presented in Section III, as well as the optimization techniques
proposed in Section IV, can be used to extend many existing
variants of LRR [15] with the �2,1 norm-based regularization
on the representation error. In this paper, we take an NNLRS
graph [15] as an example. NNLRS extends LRR [1] by
additionally encouraging Z to be sparse and nonnegative as

min
Z≥0,E

‖Z‖∗ + λ‖E‖2,1 + β‖Z‖1
s.t. X = XZ+ E (43)

where β is a positive tradeoff parameter. By similarly per-
forming our reformulation and kernelization, as described
in Section III, we arrive at the following robust kernel
NNLRS (RKNNLRS) graph problem:

min
Z≥0,P

‖Z‖∗ + λg(P)+ β‖Z‖1
s.t. P = I− Z. (44)

where g(P) contains the kernel matrix K = �(X)′�(X).
To solve problem (44), we introduce W = Z ∈ R

n×n ,
so the optimization problem becomes

min
W≥0,Z,P

‖Z‖∗ + λg(P)+ β‖W‖1
s.t. P = I − Z, W = Z.

Accordingly, the augmented Lagrange function is as follows:
L(Z,P,W,L,U)

= ‖Z‖∗ + λg(P)+ β‖W‖1 + 〈I − Z− P,L〉
+〈W − Z,U〉 + ρ

2

(‖I − Z− P‖2F + ‖W − Z‖2F
)

where L and U are the Lagrange multipliers, and ρ is the
penalty parameter.

The corresponding optimization is shown in Algorithm 2.
In particular, similar to the one in (14), the subproblem for
updating Zt+1 is solved in closed-form according to [30].
Moreover, the subproblem for updating Pt+1 is solved in

closed-form according to Theorem 2. Finally, the subprob-
lem for updating Wt+1 is minW≥0 L(Zt+1,Pt+1,W,Lt ,Ut ),
namely, minW≥0 β‖W‖1 + (ρt/2)‖W− (Zt+1 − (Ut/ρt ))‖2F .
Based on [15], the optimal solution can be obtained by
setting the negative elements (if any) in Sβ/ρt (Zt+1−(Ut/ρt ))
to zeros, where S·(·) is the soft-thresholding (shrinkage)
operator [15].

In this paper, we also implement a simpler version of
NNLRS, which is referred to as LRS, by dropping the
nonnegative constraint on Z (i.e., Z ≥ 0) in (43). Moreover,
the corresponding kernelized version of LRS (referred to as
RKLRS) is the problem in (44) after removing the constraint
Z ≥ 0. RKLRS can be solved using Algorithm 2 with a
simple adjustment, i.e., skipping the process “set the nega-
tive elements in Wt+1 to zeros” in the third step of each
iteration. In fact, when solving RKLRS, the subproblem for
updating Wt+1 is minW L(Zt+1,Pt+1,W,Lt ,Ut ), which can
be detailed as minW β‖W‖1+(ρt/2)‖W−(Zt+1−(Ut/ρt ))‖2F .
According to [15], Sβ/ρt (Zt+1− Ut

ρt
) is the optimal solution for

this problem. Similar to the algorithms in [10] and [21], we
cannot theoretically prove that the algorithms for RKNNLRS
and RKLRS converge to the global optimum, but they both
converge well in practice as observed in our experiments.

VI. EXPERIMENTS

In this section, we experimentally evaluate the effi-
ciency and the effectiveness of our proposed approaches.
In Section VI-A, we compare the efficiency of our proposed
algorithm with that of the existing algorithms for solving the
original LRR problem. In Section VI-B, we compare the effec-
tiveness of our proposed RKLRR, RKLRS, and RKNNLRS
algorithms with that of several subspace clustering methods
for two real-world applications (i.e., face clustering and human
activity clustering).

A. Efficiency Comparison for Different LRR Solvers

In this experiment, we compare our proposed algorithm
(i.e., Algorithm 1 with the linear kernel) with the two existing
LRR solvers ADM3B and LADMAP, for solving the original
LRR problem on a synthetic data set. To reduce the com-
putational cost, rank prediction is used in LADMAP when
solving its nuclear-norm-related subproblem. However, since
the subproblem may be solved inexactly, it may not achieve
the global optimum. Therefore, we also implement a modified
version of LADMAP [refered to as LADMAP(*)], in which
we solve the nuclear-norm-related subproblem based on full
SVD. For both ADM3B and LADMAP, we use the codes
obtained from the homepages of the authors. For LADMAP, its
fast version [18] is used. The experiments are performed on
a computer with an Intel Xeon CPU (3.07 GHz) and 64-GB
memory.

Following [1] and [18], we generate the synthetic data
sets parameterized by (s,m, d, r̃ ). In particular, we construct
s-independent subspaces with the bases {Bi }si=1 as follows:
B1 is a d× r̃ random orthogonal matrix, while {Bi }si=2 is gen-
erated by Bi+1 = TBi , where T is a random rotation matrix.
Accordingly, r̃ is the rank of each subspace, and d is the
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TABLE I

RUNNING TIME, THE TOTAL NUMBERS OF ITERATIONS, AND THE OBJECTIVE VALUES OF FOUR ALGORITHMS FOR SOLVING

THE ORIGINAL LRR PROBLEM ON THE SYNTHETIC DATA SET. (s,m, d, r̃) ARE SET TO (10, 20, 2000, 5).

# ITERATIONS DENOTES THE TOTAL NUMBER OF ITERATIONS

Fig. 2. Average running time (in seconds) of each method for solving the original LRR problem on synthetic data sets generated using different values of
parameters (s,m, d, r̃). This figure is best viewed in color. (a) Average running time versus s. (b) Average running time versus m. (c) Average running time
versus d. (d) Average running time versus r̃ .

ambient dimension of the data. Then, we sample m data points
from each subspace using Xi = Bi Qi , 1 ≤ i ≤ s, where
Qi ∈ R

r̃×m is a Gaussian matrix N (0, 1) with zero mean and
unit variance. After that, 20% of the samples are randomly
chosen to be corrupted. For each chosen sample x, we add
the Gaussian noise with zero mean and standard deviation
0.1‖x‖ on it. The running time, the total numbers of iterations,
and the objective values of the four algorithms are reported
in Table I. In addition, for a more comprehensive comparison
of the average running time of these four algorithms, we vary
s, m, d , and r̃ , respectively, to generate synthetic data sets.
In particular, the parameters (s,m, d, r̃ ) are first set to the
default values (10, 20, 2000, 5). Then, each time, we only
vary one parameter and fix the other parameters as the default
values to generate several synthetic data sets. Accordingly,
in Fig. 2(a)–(d), the corresponding average running time
of each method, over all values of λ in Table I,
is reported.

According to Table I, when setting λ to different values,
our Algorithm 1 consistently converges with the mini-
mum running time and the smallest number of iterations.
Moreover, LADMAP sometimes does not converge to the
global optimum, possibly because its nuclear-norm-related
subproblem is not exactly solved when the rank prediction
is inaccurate. However, its modified version LADMAP(*) and
the proposed algorithm usually achieve almost the same objec-
tive values, which indicates that both of them converge well.

For ADM3B, sometimes its objective value is obviously larger
than the ones from Algorithm 1 and LADMAP(*), which
indicates that ADM3B may not achieve a globally optimal
solution in some cases. Moreover, as shown in Fig. 2, our
algorithm is more efficient than others.

B. Real-World Applications

In this section, we compare the proposed methods with
several baselines for two real-world applications: 1) face
clustering and 2) human activity clustering.

1) Descriptions of the Data Sets: We use the following four
publicly available data sets, including three face data sets and
one human activity data set, to evaluate the performance of all
the methods.

1) The AR data set [32] contains >4000 frontal face
images from 126 individuals, where the images are
with the variations in facial expressions, illumination,
and occlusions (sun glasses and scarf). Following [13],
we use the subset with 2600 images corresponding to
100 individuals (50 men and 50 women). We extract the
7080-D local binary patterns (LBPs) [33] to represent
each face. In particular, after dividing each image (with
the size of 120× 165 pixels) into 8× 15 nonoverlapping
blocks, we extract a histogram of 59 bins from each
block. We finally concatenate all these histograms to
form a 7080-D feature vector for each image.
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TABLE II

DETAILS OF FOUR DATA SETS FOR FACE CLUSTERING AND HUMAN ACTIVITY CLUSTERING. FOR SIMPLICITY,

# SAMPLES (RESP., # CLUSTERS) DENOTES THE TOTAL NUMBER OF SAMPLES (RESP., CLUSTERS)

Fig. 3. Top row: example face images from the AR data set.
Middle row: example face images from the NH data set. Bottom row: example
face images from the LFW data set.

2) The Notting Hill (NH) data set [34], [35] contains
4660 face images from the movie “Notting Hill,” which
correspond to five main casts. Since the face images
are captured in the unconstrained environments, there
are large variations in poses, facial expressions, illumi-
nation, and occlusions (see Fig. 3). Following [36], we
extract the same type of descriptor, since it has shown
good performance for representing faces in the wild.
In particular, for each face image, 13 facial interesting
points are detected. For each interest point, we extract
the descriptor using the gray-level intensity values of
pixels in the elliptical region centered at the interest
point, which is further normalized to achieve local
photometric invariance. Finally, the 13 descriptors are
concatenated to form a 1937-D feature vector.

3) The Labeled Face in the Wild (LFW) data set [37]
contains more than 13,000 face images collected in an
unconstrained environment. Similar to the ones in the
NH data set, the faces in the LFW data set are also with
large variations in poses, facial expressions, illumina-
tion, and occlusions, thus making the face clustering task
very challenging. Considering that many individuals in
this data set only have few photos that are insufficient
for the clustering task, we use the subset containing
the subjects with more than 50 photos, which consists
of 1560 face images from 12 individuals. To represent
each face, we use the 127,440-D LBP feature provided
by [38] because of its excellent performance on this
challenging data set. Please refer to [38] for the feature
extraction details.

4) The Human Activity Recognition Using Smart-
phones (HARUSs) data set [39] contains the data
collected using embedded sensors (i.e. accelerometer
and gyroscope) on the smartphones. In particular, the
smartphones with embedded sensors are carried by
volunteers on their waists, while they are conducting

daily activities (e.g., walking, sitting, and laying). The
captured sensor signals (three-axial linear acceleration
and three-axial angular velocity) are preprocessed to
filter the noise and postprocessed (e.g., sampling).
Finally, for each signal, a 561-D feature vector with
time and frequency domain variables is extracted.
We use the testing set containing 2947 signals related
to six activities for a performance evaluation.

Details of these real-world data sets are summarized in
Table II. Example faces from the face data sets are shown
in Fig. 3.

2) Baselines and Evaluation Criterion: We compare our
proposed kernel-based methods (i.e., RKLRR, RKLRS,
and RKNNLRS) with the corresponding counterparts
(i.e., LRR, LRS, and NNLRS). Moreover, the following
state-of-the-art subspace clustering methods are also
compared as baselines: 1) local subspace affinity (LSA) [9];
2) spectral curvature clustering (SCC) [40]; 3) low-rank
subspace clustering (LRSC) [11] using the Frobenius norm
[LRSC(F)] and the �1 norm [LRSC(1)]; 4) SSC [10]; and
5) the kernel-based methods—kernel SSC [41], kernel SCC
(KSCC) [42], and SSDL [26].

In particular, for all the kernel-based methods, we adopt
the histogram intersection kernel (HIK) [43] on the AR
and LFW data sets, because HIK has shown good per-
formance when dealing with frequency-based features such
as LBP. Moreover, we adopt the commonly used Gaussian
kernel on the NH and HARUS data sets. For all the LRR-
based methods, we perform subspace clustering as suggested
in [21]. In particular, we first compute the affinity matrix
based on the solution Z, and then apply spectral clustering
(e.g., NCut [12]) on the resultant affinity matrix. Consid-
ering LSA, SSC, LRSC(F) and LRSC(1) cannot directly
handle the high-dimensional feature on the LFW dataset, we
reduce the feature dimension before applying these meth-
ods on this dataset, in which principal component analy-
sis (PCA) is used to preserve 90% of the energy. For
LRR [21], the convergence issue of the original optimization
algorithm in [21] may degrade the clustering performance,
so we use Algorithm 1 in this paper with the linear kernel
(K = X′X) when reporting the results of LRR in Table III.

We use the clustering error [10] for performance evaluation,
which is defined as

clustering error = # misclassified samples

# all samples

where # denotes “the number of.” Lower clustering error indi-
cates better performance. Following [1], to fairly compare
all the methods, we manually tune the parameters (excluding
the kernel parameters) of all methods and report the best
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TABLE III

CLUSTERING ERRORS (%) OF ALL METHODS ON THE AR, NH, AND LFW DATA SETS (FOR FACE CLUSTERING)

AND THE HARUS DATA SET (FOR HUMAN ACTIVITY CLUSTERING). THE METHODS WITH

THE SUPERSCRIPT ∗ ARE OUR PROPOSED ONES. THE BEST RESULTS ARE IN BOLD

performance for each method. Note that the HIK is parameter-
free. For Gaussian kernel, we use the default bandwidth
parameter, which is set to the mean of the distances between
all the samples.

3) Experimental Results: The clustering errors for all meth-
ods on the AR, NH, LFW and HARUS datasets are shown
in Table III. According to Table III, we have the following
observations.

1) Our kernel-based methods RKLRR, RKLRS, and
RKNNLRS perform better than the corresponding
baselines LRR, LRS, and NNLRS, respectively. The
improvements brought by kernelization are generally
more than 2% on these data sets. RKLRS achieves the
best results on three data sets (AR, NH, and HARUS),
while RKNNLRS achieves the best result on the LFW
data set. SCC and KSCC do not explicitly handle cor-
rupted data, so their clustering errors are large, especially
on the AR data set, where some faces are occluded by
sunglasses and scarves. Such an observation is consistent
with that in [10].

2) LRS and NNLRS (both are the variants of LRR)
perform better than LRR. Regarding the corresponding
kernelized versions, RKLRS consistently outperforms
RKLRR. Interestingly, although RKNNLRS has the
additional nonnegative constraint, it generally performs
worse than RKLRS.

3) On all four data sets, our proposed RKLRR consis-
tently achieves better performance than that of SSDL,
which uses the squared Frobenius norm to regularize
the representation error. This observation demonstrates
the robustness of the �2,1 norm in RKLRR to handle the
outliers.

4) When the feature dimension is very high, several
approaches (e.g., LSA) that work in the linear fea-
ture space may need to first preprocess the data by
reducing the dimension with the existing dimension
reduction techniques (such as PCA used in our experi-
ments). In contrast, the kernel-based methods still work
well, which demonstrates the advantage of the kernel-
based methods when dealing with high-dimensional
data.

Moreover, we take the NH data set (where d < n) and the
LFW data set (where d > n) as two representative examples
to compare the efficiency of Algorithm 1 with the existing
optimization algorithms ADM3B and LADMAP for solving
the original LRR problem. Using the same computer with the
configuration mentioned in Section VI-A, the recorded running

times (in seconds) are 5970.52, 2759.86, and 879.84 (resp.,
10 114.25, 609.02, and 81.39) for ADM3B, LADMAP, and
Algorithm 1 on the NH (resp., LFW) data set, demonstrating
the efficiency of our optimization algorithm especially when
the feature dimension is high.

VII. CONCLUSION

In this paper, we have proposed the kernelized version of
LRR for handling clean data, and presented a closed-form
solution for it. Moreover, to handle the corrupted data, we have
proposed RKLRR as well as a new optimization algorithm
to solve the corresponding nontrivial optimization problem.
In particular, we provide the closed-form solution for the �2,1
norm-related subproblem, such that both subproblems involved
in our optimization algorithm can be efficiently solved. More-
over, the convergence of our algorithm is guaranteed in theory.
With our proposed optimization technique, many variants of
LRR with the �2,1 norm-based regularizer on the error term
can be similarly kernelized and solved, for which we take
NNLRS and its simplified version LRS as two showcases
to introduce their kernelized versions. Comprehensive experi-
ments on the synthetic data sets and the real-world data sets
have clearly demonstrated the efficiency of our Algorithm 1
and the effectiveness of RKLRR as well as the kernelized
versions of NNLRS and LRS.

In the future, we plan to study how to choose the optimal
kernels for our RKLRR, RKLRS, and RKNNLRS.

APPENDIX A
PROOF OF THEOREM 1

Proof: Since �(X) = [φ(x1), . . . , φ(xn)], we can decom-
pose the equality constraint of problem (8) as

φ(x j ) =
n∑

i=1

φ(xi )Zi j ∀ j = 1, . . . , n. (45)

Note that each equality in (45) can be rewritten as

0 =
n∑

i=1

φ(xi )(Zi j − δi j ) (46)

where the scalar δi j ∈ {0, 1} is the (i, j)th element of In ,
∀i, j = 1, . . . , n. Note that

∑n
i=1 φ(xi )(Zi j − δi j ) is zero, if

and only if the inner product between
∑n

i=1 φ(xi )(Zi j − δi j )
and itself is zero, namely
(

n∑

i=1

φ(xi )(Zi j − δi j )

)′ ( n∑

i=1

φ(xi )(Zi j − δi j )

)

= 0. (47)
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By defining z j (resp., e j ) as the j th column of Z
(resp., In) and considering K = V�2V′, we rewrite the
left-hand side of (47) as

(�(X)(z j − e j ))
′(�(X)(z j − e j ))

= (z j − e j )
′�(X)′�(X)(z j − e j )

= (z j − e j )
′K(z j − e j )

= (z j − e j )
′V�2V′(z j − e j )

= (V′z j − V′e j )
′�2(V′z j − V′e j ).

In summary, the probelm in (8) can be rewritten as follows:
min

Z=[z1,...,zn]
‖Z‖∗

s.t. (V′z j − V′e j )
′�2(V′z j − V′e j ) = 0 ∀ j = 1, . . . , n.

(48)

Note that ‖Z‖∗ = ‖VZ‖∗ always holds, since V is an
orthogonal matrix and the nulcear norm is unitarily invariant.
Let us define Z̃ = V′Z, and let z̃ j = V′z j denote the
j th column of Z̃. As a result, problem (48) becomes

min
Z̃=[z̃1,...,z̃n]

‖Z̃‖∗
s.t. (z̃ j − V′e j )

′�2(z̃ j − V′e j ) = 0 ∀ j = 1, . . . , n.

(49)

Since �2 = diag([σ 2
1 , . . . , σ

2
rK
, 0, . . . , 0]′), where {σi }rK

i=1 are
positive, the equality (z̃ j − V′e j )

′�2(z̃ j − V′e j ) = 0 holds
if and only if the first rK elements of the vector (z̃ j − V′e j )
are zeros, ∀ j = 1, . . . , n. Recalling that VK is obtained using
the first rK columns of V, we can equivalently rewrite the
constraint of (49) as Z̃ ∈ Z , where the set Z is defined as

Z = {Z̃ Z̃ = [VK ,R]′, R ∈ R
n×(n−rK )}.

Accordingly, the problem in (49) becomes

min
Z̃
‖Z̃‖∗ s.t. Z̃ ∈ Z. (50)

Note that ‖[A,B]′‖∗ ≥ ‖A‖∗ holds for any matrices A and B
with compatible sizes, and the inequality becomes an equality
if and only when B is a zero matrix. Therefore, for any Z̃ =
[VK ,R], where R ∈ R

n×(n−rK ), we have

‖Z̃‖∗ = ‖[VK ,R]′‖∗ ≥ ‖V′K ‖∗ = ‖[VK ,On×(n−rK )]′‖∗.
As a result, [VK ,On×(n−rK )]′ is the optimal solution of the
problem in (50). Considering Z = VZ̃ (due to Z̃ = V′Z),
we conclude that V[VK ,On×(n−rK )]′, which can also be
rewritten as VK V′K , is the optimal solution of (8). �

APPENDIX B
PROOF OF LEMMA 1

Proof: For convenience, we denote the objective
of (18) as

F(p) = f (p)+ ψ(p)
where f (p) = (p′S2p)1/2 and ψ(p) = τ/2‖p− h‖2.

Note that F(p) is convex, and an optimum of (18) corre-
sponds to a stationary point of F(p). Therefore, to find the

optimal solution of the problem in (18), we first derive the
subgradient of F(p), and then seek its stationary point.

Since F(p) can be expressed as the sum of f (p) and ψ(p),
let us derive the subgradients of f (p) and ψ(p), respectively.
The subgradient of ψ(p) with respect to p is as follows:

∂ψ(p) = τ (p− h).

For f (p), note that it can be rewritten as f (p) = ‖Sp‖. Based
on [44], the subgradient of f (p) with respect to p is as follows:

∂ f (p) =
{{S′r | ‖r‖ ≤ 1}, if Sp = 0q

S2p
‖Sp‖ , otherwise.

Recall that the diagonal matrix S, in which all the diagonal
elements are positive, is a positive definite matrix. As a result,
Sp = 0q is equivalent to p = 0q .

In summary, the subgradient of F(p) can be expressed as

∂F(p) =
⎧
⎨

⎩

{S′r + τ (p− h) | ‖r‖ ≤ 1}, if p = 0q

S2p
‖Sp‖ + τ (p− h), otherwise.

Based on the above two cases, let us discuss the stationary
point of F(p) accordingly in two cases as follows.

1) When p = 0q , we have

∂F(p) = {S′r + τ (p− h) | ‖r‖ ≤ 1}.
Note that p∗ = 0q is a stationary point, if and only if

0q ∈ {S′r + τ (p∗ − h) | ‖r‖ ≤ 1}. (51)

In other words, p∗ = 0q is a stationary point, if and
only if there is a vector r that satisfies the following
two conditions:

S′r + τ (p∗ − h) = 0q (52)

‖r‖ ≤ 1. (53)

Recalling that p∗ = 0q and S is positive definite,
(52) is equivalent to r = τS−1h. Combining this with
inequality (53), we arrive at

‖S−1h‖ ≤ 1

τ
.

Therefore, p∗ = 0q is a stationary point of F(p),
if and only if ‖S−1h‖ ≤ (1/τ). In particular, when
‖S−1h‖≤ (1/τ), we have r = τS−1h that satisfies (51).

2) When p �= 0q , we have

∂F(p) = S2p
‖Sp‖ + τ (p− h).

As a result, p∗ �= 0q is a stationary point, if and only
if S2p∗/‖Sp∗‖+ τ (p∗ − h) = 0q . This condition can be
rewritten as

(
S2

‖Sp∗‖ + τ I
)

p∗ = τh.

By defining a scalar α � ‖Sp∗‖, we rewrite p∗ as

p∗ =
(

S2

τα
+ I

)−1

h. (54)
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Since p∗ �= 0q , we have Sp∗ �= 0q . Accordingly, we
have α = ‖Sp∗‖ > 0. Moreover, given α = ‖Sp∗‖ and
α > 0, we conclude that α is the positive root of

α2 = (p∗)′S2p∗. (55)

By substituting (54) into (55), we obtain

α2 = τ 2α2h′diag

⎛

⎝

{
s2

i

(s2
i + τα)2

}

1≤i≤q

⎞

⎠ h. (56)

Dividing both the sides of (56) by τ 2α2, we arrive
at (20).

Now, if the positive root of the equation in (20) exists, we
can first obtain α, and then obtain p∗ by substituting α into
(54). In the following, we show the existence condition of the
positive root of (20).

For convenience, we define the following function with
respect to α:

�(α) � h′diag

⎛

⎝

{
s2

i

(τα + s2
i )

2

}

1≤i≤q

⎞

⎠ h− 1

τ 2 . (57)

With this definition, (20) can be rewritten as �(α) = 0. We
can verify the following properties of �(α).

1) The function �(α) with respect to α is continuous, and
it is strictly decreasing when α is in the range [0,+∞).
In fact, the continuity of �(α) is obvious. Moreover, we
can easily verify that the gradient of �(α) is negative for
any positive α, so �(α) is strictly decreasing when α is
in the range [0,+∞).

2) limα→0 �(α) = ‖S−1h‖2 − 1/τ 2.
Actually, due to the continuity of �(α), limα→0 �(α) can
be calculated as �(0) = h′diag({s−2

i }1≤i≤q)h − 1/τ 2,
where the first term can be expressed as ‖S−1h‖2.

3) limα→+∞ �(α) < 0.
Note that limα→+∞ �(α) = −1/τ 2 and τ 2 > 0, so
limα→+∞ �(α) < 0.

Based on the above properties and the intermediate value
theorem [31], it is easy to verify that there exists a pos-
itive scalar α which satisfies �(α) = 0 if and only if
‖S−1h‖2 − (1/τ 2) > 0, namely

‖S−1h‖ > 1

τ
.

In particular, when ‖S−1h‖ > 1/τ , the positive root of the
equation �(α) = 0 exists, and such positive root is unique due
to the strictly decreasing property of �(α). Furthermore, let α∗
be the unique positive root of �(α) = 0, then we can prove
the following inequality that determines the range of α∗:

max(0, αl ) ≤ α∗ ≤ αu (58)

in which αu = (h′diag({s2
i }1≤i≤q)h)1/2 − s2

q/τ is the positive
root of an equation fu(α) = 0; αl = (h′diag({s2

i }1≤i≤q)h)1/2−
s2

1/τ is the larger root of another equation fl (α) = 0, where

the two functions fu(α) and fl (α) are defined as

fu(α) = h′
diag({s2

i }1≤i≤q)

(τα + s2
q )

2 h− 1

τ 2

fl(α) = h′
diag({s2

i }1≤i≤q)

(τα + s2
1 )

2
h− 1

τ 2 .

In particular, fu(α) is obtained by the amplification of �(α) by
replacing (τα+s2

i ) with (τα+s2
q ), while fl(α) is obtained by

the minification of �(α) by replacing (τα+s2
i ) with (τα+s2

1 ).
In fact, the following statements can be easily verified.
1) When α ∈ [0,+∞), fu(α) and fl(α) are continuous,

strictly decreasing with respect to α, and satisfy

fu(α) ≥ �(α) ≥ fl(α).

2) limα→0 fu(α) = fu(0) ≥ �(0) > 0 holds, while it is
unclear whether limα→0 fl(α) = fl(0) is positive or not.

3) limα→+∞ fu(α) = limα→+∞ fl(α) = −1/τ 2 < 0.
Therefore, fu(α) = 0 has a unique positive root, namely αu ,
which is no less than α∗. Moreover, αl [i.e., the larger root of
fl(α) = 0] is no greater than α∗, but not necessarily positive.
As a result, the inequalities in (58) are verified. Accordingly,
we can obtain α∗ by the bisection search method [31] within
the searching range [max(0, αl ), αu ].

In summary, if and only if ‖S−1h‖ > (1/τ) is satisfied,
there exists p∗ �= 0q , which is optimal to the problem
in (18). In particular, when ‖S−1h‖ > (1/τ), p∗ can be
calculated as in (54), where α is the unique positive root of the
equation in (20) and can be obtained by the bisection search
method [31].

This completes the proof of Lemma 1. �
ACKNOWLEDGMENT

This research was supported by funding from the Faculty
of Engineering & Information Technologies, The University
of Sydney, under the Faculty Research Cluster Program.

REFERENCES

[1] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by low-rank
representation,” in Proc. 27th Int. Conf. Mach. Learn., Haifa, Israel,
Jun. 2010, pp. 663–670.

[2] T. Zhang, A. Szlam, Y. Wang, and G. Lerman, “Hybrid linear modeling
via local best-fit flats,” Int. J. Comput. Vis., vol. 100, no. 3, pp. 217–240,
2012.

[3] Y. Zhang, Z. Sun, R. He, and T. Tan, “Robust subspace clustering via
half-quadratic minimization,” in Proc. 14th IEEE Int. Conf. Comput.
Vis., Sydney, NSW, Australia, Dec. 2013, pp. 3096–3103.

[4] X. Peng, L. Zhang, and Z. Yi, “Scalable sparse subspace clustering,” in
Proc. 26th IEEE Conf. Comput. Vis. Pattern Recognit., Portland, OR,
USA, Jun. 2013, pp. 430–437.

[5] X. Peng, Z. Yi, and H. Tang, “Robust subspace clustering via thresh-
olding ridge regression,” in Proc. 29th AAAI Conf. Artif. Intell., Austin,
TX, USA, Jan. 2015, pp. 3827–3833.

[6] J. Ho, M.-H. Yang, J. Lim, K.-C. Lee, and D. Kriegman, “Clustering
appearances of objects under varying illumination conditions,” in Proc.
16th IEEE Comput. Soc. Conf. Comput. Vis. Pattern Recognit., vol. 1.
Madison, WI, USA, Jun. 2003, pp. I-11–I-18.

[7] M. A. Fischler and R. C. Bolles, “Random sample consensus: A para-
digm for model fitting with applications to image analysis and automated
cartography,” Commun. ACM, vol. 24, no. 6, pp. 381–395,
1981.

[8] R. Vidal, Y. Ma, and S. Sastry, “Generalized principal component
analysis (GPCA),” IEEE Trans. Pattern Anal. Mach. Intell., vol. 27,
no. 12, pp. 1945–1959, Dec. 2005.



2280 IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, VOL. 27, NO. 11, NOVEMBER 2016

[9] J. Yan and M. Pollefeys, “A general framework for motion segmen-
tation: Independent, articulated, rigid, non-rigid, degenerate and non-
degenerate,” in Proc. 9th Eur. Conf. Comput. Vis., Graz, Austria,
May 2006, pp. 94–106.

[10] E. Elhamifar and R. Vidal, “Sparse subspace clustering: Algorithm,
theory, and applications,” IEEE Trans. Pattern Anal. Mach. Intell.,
vol. 35, no. 11, pp. 2765–2781, Nov. 2013.

[11] P. Favaro, R. Vidal, and A. Ravichandran, “A closed form solution to
robust subspace estimation and clustering,” in Proc. 24th IEEE Conf.
Comput. Vis. Pattern Recognit., Colorado Springs, CO, USA, Jun. 2011,
pp. 1801–1807.

[12] J. Shi and J. Malik, “Normalized cuts and image segmentation,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 22, no. 8, pp. 888–905,
Aug. 2000.

[13] J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, “Robust face
recognition via sparse representation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 31, no. 2, pp. 210–227, Feb. 2008.

[14] H. Fu, D. Xu, S. Lin, D. W. K. Wong, and J. Liu, “Automatic optic
disc detection in OCT slices via low-rank reconstruction,” IEEE Trans.
Biomed. Eng., vol. 62, no. 4, pp. 1151–1158, Apr. 2015.

[15] L. Zhuang, H. Gao, Z. Lin, Y. Ma, X. Zhang, and N. Yu, “Non-negative
low rank and sparse graph for semi-supervised learning,” in Proc.
25th IEEE Conf. Comput. Vis. Pattern Recognit., Providence, RI, USA,
Jun. 2012, pp. 2328–2335.

[16] J. Shawe-Taylor and N. Cristianini, Kernel Methods for Pattern Analysis.
New York, NY, USA: Cambridge Univ. Press, 2004.

[17] X. Xu, I. W. Tsang, and D. Xu, “Soft margin multiple kernel learning,”
IEEE Trans. Neural Netw. Learn. Syst., vol. 24, no. 5, pp. 749–761,
May 2013.

[18] Z. Lin, R. Liu, and Z. Su, “Linearized alternating direction method
with adaptive penalty for low-rank representation,” in Proc. 24th Annu.
Conf. Adv. Neural Inf. Process. Syst., Granada, Spain, Dec. 2011,
pp. 612–620.

[19] S. Boyd, N. Parikh, E. Chu, B. Peleato, and J. Eckstein, “Distributed
optimization and statistical learning via the alternating direction method
of multipliers,” Found. Trends Mach. Learn., vol. 3, no. 1, pp. 1–122,
2011.

[20] J. Yang and Y. Zhang, “Alternating direction algorithms for �1-problems
in compressive sensing,” SIAM J. Sci. Comput., vol. 33, no. 1,
pp. 250–278, 2011.

[21] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery
of subspace structures by low-rank representation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 1, pp. 171–184, Jan. 2013.

[22] Z. Zeng et al., “Learning by associating ambiguously labeled images,”
in Proc. 26th IEEE Conf. Comput. Vis. Pattern Recognit., Portland, OR,
USA, Jun. 2013, pp. 708–715.

[23] M. Tan, I. W. Tsang, L. Wang, B. Vandereycken, and S. J. Pan,
“Riemannian pursuit for big matrix recovery,” in Proc. 31st Int. Conf.
Mach. Learn., Beijing, China, Jun. 2014, pp. 1539–1547.

[24] B. He, M. Tao, and X. Yuan, “Alternating direction method with
Gaussian back substitution for separable convex programming,” SIAM
J. Optim., vol. 22, no. 2, pp. 313–340, 2012.

[25] C. J. C. Burges, “A tutorial on support vector machines for pattern
recognition,” Data Mining Knowl. Discovery, vol. 2, no. 2, pp. 121–167,
1998.

[26] J. Wang, V. Saligrama, and D. A. Castañón, “Structural similarity
and distance in learning,” in Proc. 49th Annu. Allerton Conf.
Commun., Control, Comput., Monticello, IL, USA, Sep. 2011,
pp. 744–751.

[27] S. Xiao, W. Li, D. Xu, and D. Tao, “FaLRR: A fast low rank
representation solver,” in Proc. 27th IEEE Conf. Comput. Vis. Pattern
Recognit., Boston, MA, USA, Jun. 2015, pp. 4612–4620.

[28] N. Cristianini, J. Shawe-Taylor, and J. S. Kandola, “Spectral kernel
methods for clustering,” in Proc. 14th Annu. Conf. Adv. Neural Inf.
Process. Syst., Vancouver, BC, Canada, Dec. 2001, pp. 649–655.

[29] T. Hofmann, B. Schölkopf, and A. J. Smola, “Kernel methods in machine
learning,” Ann. Statist., vol. 36, no. 3, pp. 1171–1220, 2008.

[30] J.-F. Cai, E. J. Candès, and Z. Shen, “A singular value thresholding
algorithm for matrix completion,” SIAM J. Optim., vol. 20, no. 4,
pp. 1956–1982, 2010.

[31] R. L. Burden and J. D. Faires, Numerical Analysis. Boston, MA, USA:
Cengage Learning, 2011.

[32] A. M. Martinez and R. Benavente, “The AR face database,” CVC,
Barcelona, Spain, Tech. Rep. 24, Jun. 1998.

[33] M. Kan, D. Xu, S. Shan, W. Li, and X. Chen, “Learning prototype
hyperplanes for face verification in the wild,” IEEE Trans. Image
Process., vol. 22, no. 8, pp. 3310–3316, Aug. 2013.

[34] Y.-F. Zhang, C. Xu, H. Lu, and Y.-M. Huang, “Character identification
in feature-length films using global face-name matching,” IEEE Trans.
Multimedia, vol. 11, no. 7, pp. 1276–1288, Nov. 2009.

[35] S. Xiao, M. Tan, and D. Xu, “Weighted block-sparse low rank represen-
tation for face clustering in videos,” in Proc. 13th Eur. Conf. Comput.
Vis., Zürich, Switzerland, Sep. 2014, pp. 123–138.

[36] M. Everingham, J. Sivic, and A. Zisserman, “‘Hello! My name
is... Buffy’—Automatic naming of characters in TV video,” in Proc.
17th Brit. Mach. Vis. Conf., Edinburgh, U.K., Sep. 2006, pp. 899–908.

[37] G. B. Huang, M. Ramesh, T. Berg, and E. Learned-Miller, “Labeled
faces in the wild: A database for studying face recognition in
unconstrained environments,” Dept. Comput. Sci., Univ. Massachusetts,
Amherst, MA, USA, Tech. Rep. 07-49, Oct. 2007.

[38] D. Chen, X. Cao, F. Wen, and J. Sun, “Blessing of dimensionality:
High-dimensional feature and its efficient compression for face verifica-
tion,” in Proc. 26th IEEE Conf. Comput. Vis. Pattern Recognit., Portland,
OR, USA, Jun. 2013, pp. 3025–3032.

[39] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “Human
activity recognition on smartphones using a multiclass hardware-friendly
support vector machine,” in Proc. 4th Int. Workshop Ambient Assist.
Living Home Care, Vitoria-Gasteiz, Spain, Dec. 2012, pp. 216–223.

[40] G. Chen and G. Lerman, “Spectral curvature clustering (SCC),” Int. J.
Comput. Vis., vol. 81, no. 3, pp. 317–330, 2009.

[41] V. M. Patel and R. Vidal, “Kernel sparse subspace clustering,” in
Proc. 21st IEEE Int. Conf. Image Process., Paris, France, Oct. 2014,
pp. 2849–2853.

[42] G. Chen, S. Atev, and G. Lerman, “Kernel spectral curvature
clustering (KSCC),” in Proc. 12th IEEE Int. Conf. Comput. Vis.
Workshops, Kyoto, Japan, Sep./Oct. 2009, pp. 765–772.

[43] J. Wu and J. M. Rehg, “Beyond the Euclidean distance: Creating
effective visual codebooks using the histogram intersection kernel,” in
Proc. 22nd IEEE Conf. Comput. Vis. Pattern Recognit., Miami, FL,
USA, Sep./Oct. 2009, pp. 630–637.

[44] J. Yang, W. Yin, Y. Zhang, and Y. Wang, “A fast algorithm for
edge-preserving variational multichannel image restoration,” SIAM J.
Imag. Sci., vol. 2, no. 2, pp. 569–592, 2009.

Shijie Xiao (S’15) received the B.Eng. degree from
the Honors School, Harbin Institute of Technology,
Harbin, China, in 2011. He is currently pursuing the
Ph.D. degree with the School of Computer Engineer-
ing, Nanyang Technological University, Singapore.

His current research interests include machine
learning and computer vision.

Mingkui Tan (M’14) received the bachelor’s degree
in environmental science and engineering and the
master’s degree in control science and engineering
from Hunan University, Changsha, China,
in 2006 and 2009, respectively, and the
Ph.D. degree in computer science from Nanyang
Technological University, Singapore, in 2014.

He is currently a Senior Research Associate with
the School of Computer Science, The University
of Adelaide, Adelaide, SA, Australia. His current
research interests include compressive sensing, big

data learning, and large-scale optimization.



XIAO et al.: RKLRR 2281

Dong Xu (M’07–SM’13) received the B.E.
and Ph.D. degrees from the University of Sci-
ence and Technology of China, Hefei, China,
in 2001 and 2005, respectively.

He was with Microsoft Research Asia, Beijing,
China, and the Chinese University of Hong Kong,
Hong Kong, for over two years, while pursuing
the Ph.D. degree. He was a Post-Doctoral Research
Scientist with Columbia University, New York, NY,
USA, for one year. He was a Faculty Member
with the School of Computer Engineering, Nanyang

Technological University, Singapore. He is currently a Faculty Member
with the School of Electrical and Information Engineering, The University
of Sydney, Sydney, NSW, Australia. His current research interests include
computer vision, statistical learning, and multimedia content analysis.

Dr. Xu has co-authored a paper that received the Best Student Paper Award
in the IEEE International Conference on Computer Vision and Pattern Recog-
nition in 2010. His co-authored work also won the IEEE TRANSACTIONS ON

MULTIMEDIA Prize Paper Award in 2014.

Zhao Yang Dong (M’99–SM’06) received the
Ph.D. degree from The University of Sydney,
Sydney, NSW, Australia, in 1999.

He was the Ausgrid Chair and Director of the
Centre for Intelligent Electricity Networks with the
University of Newcastle, Callaghan, NSW, Australia.
He held academic and industrial positions with the
Hong Kong Polytechnic University, Hong Kong, and
TASNetworks, Lenah Valley, TAS, Australia. He is
currently a Professor and the Head of the School
of Electrical and Information Engineering with The

University of Sydney. His current research interests include smart grid, power
system planning, power system security, load modeling, renewable energy
systems, electricity market, and computational intelligence and its application
in power engineering.

Prof. Dong is an Editor of the IEEE TRANSACTIONS ON SMART

GRID, the IEEE TRANSACTIONS ON SUSTAINABLE ENERGY, the
IEEE POWER ENGINEERING LETTERS, and IET Renewable Power
Generation.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


