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Abstract— Generating videos given a text description (such
as a script) is non-trivial due to the intrinsic complexity of
image frames and the structure of videos. Although Generative
Adversarial Networks (GANs) have been successfully applied to
generate images conditioned on a natural language description,
it is still very challenging to generate realistic videos in which
the frames are required to follow both spatial and temporal
coherence. In this paper, we propose a novel Bottom-up GAN
(BoGAN) method for generating videos given a text description.
To ensure the coherence of the generated frames and also make
the whole video match the language descriptions semantically,
we design a bottom-up optimisation mechanism to train BoGAN.
Specifically, we devise a region-level loss via attention mechanism
to preserve the local semantic alignment and draw details in
different sub-regions of video conditioned on words which are
most relevant to them. Moreover, to guarantee the matching
between text and frame, we introduce a frame-level discriminator,
which can also maintain the fidelity of each frame and the
coherence across frames. Last, to ensure the global semantic
alignment between whole video and given text, we apply a video-
level discriminator. We evaluate the effectiveness of the proposed
BoGAN on two synthetic datasets (i.e., SBMG and TBMG) and
two real-world datasets (i.e., MSVD and KTH).

Index Terms— Generative adversarial networks, video genera-
tion, semantic alignment, temporal coherence.

I. INTRODUCTION

ISION is one of the most important ways in which
humans experience, interact with, understand, and learn
about the world around them. Intelligent systems that can
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“Digit 7 is going up and down, digit 0 is going left and right.”
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“Person 04 is running left to right.”

“Someone pours uncooked rice into a pan.”
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Fig. 1. Generated videos conditioned on given scripts by our BOGAN model
trained on SBMG, TBMG, KTH and MSVD datasets, respectively.

generate videos for human users has tremendous potential
application, such as video editing, video games, and computer-
aided design. Unfortunately, many modern and creative works
are now generated or edited using digital graphic design
tools. The complexity of these tools may lead to inaccessi-
bility issues, particularly for people with insufficient technical
knowledge or resources. Thus, a system that has the ability to
follow speech- or text-based instructions and then perform a
corresponding video editing task could improve accessibility
substantially. These benefits can easily extend to other domains
of video generation such as gaming, animation, creating visual
teaching material, efc. In this paper, we take a step in this
exciting research direction by the text to video generation task.

Specifically, we focus on video generation from text, which
aims to generate a video semantically aligned with some given
descriptive scripts. Compared to image generation [1]-[4],
the video generation task is much more difficult since the
video is often a complex sequence of many frames which
should follow strong spatial and temporal dependencies. More
critically, generating video conditioned on given text is even
more complicated due to the requirement of semantic align-
ment between video and text at both frame and video levels.
Thus, although there are already a lot of existing models for
text-to-image generation, simply using the image generator
to synthesise videos may incur poor performance (see the
experimental results in Sec. IV and the results in [5]).

In video generation from text, there are two main chal-
lenges: 1) semantic alignment between given text and video
content; 2) realistic video generation with temporal coher-
ence across frames. Recently, some existing works have
tried to address these challenges individually. For example,
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Li et al. [S] propose a two-stage VAE-based generator to yield
a ‘gist’ of video from the input text first, where the gist is an
image that gives the background colour and object layout. The
content and motion of the video is then generated by condi-
tioning on the gist. However, since they neglect the relation
between consecutive frames, the motions of generated video
are incoherent. Conversely, Pan et al. [6] consider the temporal
coherence across frames and generate video with the given
text with a carefully designed discriminator. Nonetheless, due
to the sweeping alignment between text and video via the
classical conditional loss [1], the generated videos ignore some
subtle semantics of words, which is vital to synthesise the
details.

To address the above issues, we propose a novel Bottom-
Up Generative Adversarial Network (BoGAN), which ensures
the coherence between consecutive frames and preserve the
semantic matching between video and the corresponding lan-
guage description at different levels. More specifically, we
design a sophisticated bottom-up mechanism with multiple
losses in terms of three levels: 1) region-level, 2) frame-level
and 3) video-level. To keep the local semantic alignment,
we devise a region-level loss via attention mechanism to
draw different sub-regions of video conditioned on the words
which are relevant to them. Moreover, to guarantee the match
between given script and each frame, we design a frame-
level discriminator, which maintains the fidelity of each frame
and the coherence across frames. Finally, to ensure the global
semantic alignment between the entire video and correspond-
ing description, we apply a video-level discriminator with 3D
convolutional filers. On the other hand, for video generator,
relying on the classical encoder-decoder design, we build the
encoder with a Long-Short Term Memory (LSTM) network
to convert the input script into an embedding while devise
the decoder with 3D deconvolutional layers, which generates
a sequence of frames from given vector.

We test our BOGAN on two synthetic datasets (SBMG
[6] and TBMG [6]) and two real-world datasets (MSVD [7]
and KTH [8]). We employ quantitative evaluations by using
the commonly used generative adversarial metrics, includ-
ing Fréchet Inception Distance (FID) [9] and its variant
in video (FID2vid) [10]. BOGAN outperforms the baseline
model and state-of-the-art models by a large margin. Several
variants of our model are tested to validate the contribution
of each component. To measure whether the generated video
semantically matches the script, several human studies are
performed.

We highlight our principal contributions as follows:

« We propose a novel Bottom-Up Generative Adversarial
Network (BoGAN) to produce videos according to natural
language descriptions, in which the generated frames well
follow the semantic alignment with given scripts.

« In synthesising videos, to ensure the fidelity of frames and
multi-scale semantic alignment with given text, we design
a sophisticated bottom-up mechanism to optimise our
video generator. To be specific, the mechanism consists
of multiple losses at three different levels (from local to
global), which focus on temporal coherence and semantic
match on various granularity.
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o We achieve the state-of-the-art performance on both syn-
thetic and real-world datasets in terms of qualitative and
quantitative metrics. Moreover, we conduct an ablation
study to verify the effectiveness of each component and
report some discussions about hyper-parameters.

II. RELATED WORK
A. Video Generation

A spatial-temporal 3D deconvolution-based GANs is pro-
posed for unconditioned video generation in [11]. To learn the
semantic representation of unlabeled videos, Saito ef al. [12]
design two different generators (a temporal generator and
an image generator), which sequentially transform a single
latent variable into a video. Tulyakov et al. [13] propose
a framework to generate video by decomposing motion and
content in an unsupervised manner. On the other hand, many
applications focus on generating video conditioned on a sta-
ble image (frame), such as [14]-[18]. Convolutional Neural
Network (CNN) and Recurrent Neural Network (RNN) are
widely used and achieve the great performance in these
applications [19]-[23]. The common thread of these works
is to use CNN for encoding each frame and then to apply
an sequence-to-sequence model for frame prediction. Instead
of unconditioned or image conditioned videos generation, we
focus on generating videos conditioned on text, which is more
challenging due to the requirement of semantic alignment
between videos and natural languages.

B. Video Generation Conditioned on Text

Video generation conditioned on text aims to synthesise a
video which is semantically aligned with the given descriptive
sentence, such as a caption or script. Mittal et al. [24] devise
a method to generate video from text by combining a Vari-
ational Autoencoder with a Recurrent Attention Mechanism,
which captures the temporally dependent sequence of frames.
Marwah et al. [25] propose an improved model to incorporate
the long-term and short-term dependencies between frames
and generate video in a incremental manner. Most recently,
Li et al. [5] propose a two-stage VAE-based generator to
generate a ‘gist’ of the video from input text, where the
gist is an image that gives the background colour and object
layout. The content and motion of the video are then gen-
erated by conditioning on the gist. Meanwhile, due to the
success of Generative Adversarial Networks (GANs) [26],
Pan et al. [6] consider the temporal coherence across frames
and the semantic matching between text the whole video
with a carefully designed discriminator. Besides the frame
coherence and video-text semantic matching considered in the
above methods, we also develop a bottom-up mechanism to
ensure the spatial-temporal coherence and semantic matching
between text and video at multiple levels, including region,
frame and video.

C. Generative Adversarial Network

Generative Adversarial Network (GAN) has been the sub-
ject of significant attention in the last few years in light of
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Fig. 2. The architecture of our proposed BoOGAN. The region-level model seeks to draw different sub-regions of the video according to the most relevant
words; the frame-level model ensures the fidelity in each frame and the coherence across frames; the last video-level model makes the generated video more

natural and more consistent with the script.

advances in deep learning. Original GAN [26] is proposed
to generate natural images from input noise. The applica-
tion domain has broadened significantly, however, particu-
larly into image generation [27]-[34]. Besides, GAN has
also been applied to range of other interesting applications
including image inpainting [35]-[38], image/video super-
resolution [39]-[42], image/video deblurring [43], [44] and
facial attribute manipulation [45]-[47], etc. Specifically, GAN
learns a generative model by playing a two-player minimax
game to match the underlying data distribution. A GAN is
made up of a generator and a discriminator. The generator
struggles to produce samples whose distribution is indistin-
guishable from that of the training samples. On the other hand,
the discriminator acts as a judge to distinguish the generated
samples and real samples. Our model extends the original
GAN structure, having one generator, one semantic matching
module and two discriminators.

III. PROPOSED METHOD

The main challenges for video generation from script lie
on how to capture both spatial and temporal coherence, as
well as the semantic dependency between text and video.
To solve these problems, we propose a novel architecture
named Bottom-Up Generative Adversarial Network (BoGAN).
From Fig. 2, our proposed BOGAN consists of four parts: a
video generator, a region-level semantic alignment module, a
frame-level coherence-aware discriminator and a video-level
semantic-aware discriminator. To be specific, the motivation
of each module is illustrated as follows:

Video Generator. We first build a video generator, which
aims to synthesise the video from input script via a typical
encoder-decoder design. Given a text, we use a LSTM-based
encoder to produce hidden states and then generate a sequence
of frames by a 3D convolutional decoder.

Region-level Semantic Alignment Module. To enable the
generator to exploit the local semantic alignment between
video and words, we devise a region-level semantic alignment
module, which draws different sub-regions of the video condi-
tioned on the words that are most relevant to those sub-regions.

Frame-level Coherence-aware Discriminator. In order to
keep the match between text and each frame, we propose
a frame-level coherence-aware discriminator, which can also
enhances the realism in each generated frame and the temporal
coherence between two consecutive frames.

Video-level Semantic-aware Discriminator. Finally, to pro-
duce a natural video with strong semantic alignment with
the natural language description, we design a video-level
semantic-aware discriminator to exploit the global information
over the entire video.

A. Video Generator

As shown in Fig. 2, to synthesise video from given
text, we build a video generator, which follows the widely
used encoder-decoder design. More specifically, the encoder
is a bi-directional Long Short-Term Memory (LSTM) [48]
that extracts semantic vector from the input text Q. In the
bi-directional LSTM, each word corresponds to two hidden
states, one for the forward and one for the backward direction.
Thus, we concatenate its two hidden states to represent the
semantic meaning of a word. The feature matrix of all words
is indicated by E € RP*T Its i"* column e; represents the
embedding of i"" word. D is the dimension of the extracted
word embeddings and 7 denotes the number of words in
a script. The global sentence representation € € RP is the
concatenation of last hidden states of the bi-directional LSTM.

To synthesise video that embodies the same semantic
content as the input text, we incorporate the semantic text
embedding & with random noise z € R% ~ N(0, 1). Then,
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we use a fully-connected layer to learn a unified embedding:
p=W.[z & R, M

where W, € R%*@+D) is the embedding weight, dp is
the embedding size, and [-; -] is the concatenation operation.
Conditioned on input vector p, we generate the corresponding
video by

X = G(p) € Rd‘:Xledthw, )

where X = {.7? 1, .7?2, R .7?(1,} denotes the synthetic video, and
F; € Réexdnxdu ig the j1h synthetic frame. Here d,, d;, dy, d,,
denote the channels number, sequence length, and frame
height and width, respectively. To preserve the spatial-temporal
information, we devise the generative model G using the 3D
convolution filters [49] as deconvolutions [50], which is able
to simultaneously capture the spatial structural information in
each frame and the temporal information across frames.

To generate video from script, the proposed model must:
1) preserve the semantic alignment between given text and
video content; and 2) ensure the realism of each frame while
maintain the coherence across frames.

To satisfy the above requirements, we propose a bottom-
up mechanism consisting of three losses L, Lr and Ly,
which reflect the region-level, frame-level and video-level
suitability, respectively. The L is a novel region-level loss,
which focuses on exploiting the match between words and sub-
regions of video. The adversarial losses L and Ly are used
to ensure the semantic alignment and realism of the generated
videos at frame-level and video-level, respectively. Overall, the
final objective function of the generator G is

Lg=Lr+MLF+ 2Ly, 3)

where A1 and A, are trade-off parameters. In experiments, we
set the parameters A1 and 4, to 1 by default. We elaborate on
the modules that lead to these losses in the following sections.

B. Region-Level Semantic Alignment Module

The region-level semantic alignment module enables the
generator G to exploit the local information in the video and
draw different sub-regions of the video conditioned on words
that are most relevant to those sub-regions.

Specifically, the region-level module takes two features as
inputs, one from text and the other from video. The text feature
is the word feature matrix e extracted from a bi-directional
LSTM (see Sec. III-A), and the video feature is extracted from
a 3D convolution neural network (3D CNN). We extract the
local feature matrix U € RP*¥ (reshaped from D x w x h)
from one of the intermediate layers of this 3D CNN network.
Each column of U is a feature, which represents a sub-region
of the video. D is the dimension of the local features, and N
is the number of sub-regions in a video. In order to measure
the relevance of the words and sub-regions, we convert the
video features into the common semantic space of the word
embeddings e using a perceptual layer W ,:

V=W, U, )
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where W, € RP*P vV ¢ RP>*N and its i'" column v; is
the converted feature in the common space for the i’ sub-
region of the video, and D denotes the dimension of both text
embeddings and video features.

To measure the alignment of the word-region pairs, we
design a region-level loss Lr to optimise the generator G.
The loss L is able to calculate the similarity of all possible
pairs between words and sub-regions of video. Firstly, to
represent the relevance of words and sub-regions, we calculate
the similarity matrix for all possible pairs of words in the text
and sub-regions in the video by

S=E'V, (5)

where S € RT*N and s;; is the similarity between the
i"" word of the text and the j sub-region of the video.
Second, we build an attentional model to compute a feature
vector for each sub-region for each word. The vector ¢; is a
representation of the video’s sub-regions, which is relative to
the i*" word of the whole text. We compute ¢; as the weighted
sum over all features of sub-region. The function is designed
as
N
¢ = Zajvj, where o =
j=1

exp(si,j/11)
S explsik /i)

where w1 is used to adjust the smooth of attention in different
sub-regions. Then, we establish the relevance between the
i word and the corresponding sub-region of video using
the cosine similarity between ¢; and e;. The function can be
defined as

(6)

c.Te,-

(D(C,', e,-) =Lt (7)
lleillle;
Motivated by [51] and [52], we design a function R(V, Q) to
measure the magnitude of coherence between the entire video
VY and the whole text Q, which is

1

T ]
R(V, Q) = log (Z exp(y @ (ci, e»)) , @®)
i=1

where y is a factor that determines how much to magnify
the significance of the most relevant word-region pair. When
y — 00, R(V, Q) approximates to maxiT:1 D(c;, ).

Finally, based on the posterior probability of text @ match-
ing with video V, we design a loss function as

1
E =

M
n=" Z log P(V;19;), 9)

i=1
where M denotes the size of mini-batch and P (V;|Q;) can be
defined as
exp(R(V;, Qi
POy = —SPROLQ) /)
> exp(R(V;, Q))/u2)
where po is a hyper-parameter to determine the smooth
magnitude. Likewise, we formulate another loss which is
symmetrical to Eq. (9), i.e.,

(10)

1
E =

n=—1r (1

M
> log P(Qi[V)),

i=1
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exp(R(Qi,Vi)/12)
L1 exp(R(Qi,V))/ 12)
function of our region-level loss is

£R = £r1 + £r2,

where P(Q;|V;) =

Thus, the objective

(12)

where £,, and £, play the equivalent role. Notably, unlike the
image-text matching in existing researches, such as [53]-[55],
our region-level module aims to capture the related regions for
each word. To this end, we measure the similarity between
the sub-region of video and each word of sentence. In this
way, the region-level module ensures the video generator to
preserve the fine-grained semantic alignment between video
and given descriptions.

C. Frame-Level Coherence-Aware Discriminator

To ensure the alignment between frames and given text and
further enhance the realism of generated video, we introduce
a discriminative module D at frame-level that enables the
generator G to exploit both the quality of each frame and the
coherence of each motion.

As shown in Fig. 2, we first use a shared 2D convolution
model to extract the frame-level features m from each frame
of the video. Unlike image generation, which focuses on the
realism of single image/frame, we aim to capture both spacial
and temporal information among frames. Thus, we propose
two different convolution models to handle the frames and
motions. In this way, the model D can be separated into two
sub-modules: 1) a frame discriminator D to distinguish real-
istic frames from generated ones and 2) a motion discriminator
Dy, used to distinguish whether the motions across frames are
generated or not.

The first Dy discriminates whether each frame of the input
video is both real and semantically matched with the text
script. Hence, the frame feature m is augmented by the global
text embedding feature € and sent to the discriminator D . To
align the generated frame with the conditioning information,
the frame discriminator Dy must learn to evaluate whether
samples from the generator G meet this conditioning con-
straint. However, in the original GAN, the discriminator only
contains two kinds of inputs: real samples with matching text
and synthetic samples with arbitrary text. This lacks the ability
to semantically match the text and generated video. Thus, to
ensure the alignment between frames and given text, inspired
by [1], we design three kinds of training pairs including { X, e},
(X', &€} and {X, €}, where X = {F|, P>, ..., Fu} denotes the
matched real video corresponding to the text vector € while
X ={F|,F5, ..., .7-";[} is the mismatched real one. Likewise,
X = {.7?1, .7?2, AU fd,} represent our synthetic video which is
conditioned on e. A{%nd Fi, Fi' and F; denote the i'" frame in
video X', X’ and X, respectively. To optimise the discriminator
Dy, we define the following loss

d; d;
1 _ ,

i=1 i=1
d; _
+ Zlog(l —Dy(Fi,€) |, (13)

i=1

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

where d; is the number of frames of the input video.

For the motion discriminator D,,, to ensure the temporal
coherence across frames, we calculate the difference between
two consecutive frames according to the distance between
their frame-level features since the high-level representations
contain more semantic information. We define the distance as

Am; = Dist(m;, m;_1) = ||lm; —m;_q ||, (14)

where m; and m;_; denote the extracted features from frame
Fi and F;_1, respectively. || - ||; is the L1-norm. Am; is the
difference between consecutive frames, which represents the
magnitude of the motion between frames JF; and F;_j. To
incorporate this information, we optimise this discriminator
by minimising the loss

i

1
Lp, =~z | D logDy, (Am, &
T @y | & e (Ame

i
+ D log (I — Dy (Am;, €))
i=2

i

+ D log (1 =Dy (A, ©) |, (15)
i=2

where Am;, Aml’. and Am; denote the motion features
between the i" and (i-1)"" frames in video X, X’ and X,
respectively.

Thus, we optimise the frame-level discriminative model D
end-to-end by minimising the objective function, which can be
defined as

Lp, =£Df +Lp,, . (16)

The corresponding adversarial loss for optimising G at frame-
level is defined as

d;
1 = -
Lr==32 Elog(pf(}_i,e))

di

- mlzzzlog (Dm (Aﬁfll,é)) (17)

D. Video-Level Semantic-Aware Discriminator

To generate a natural video containing strong semantic
alignment with the given text, we propose a video-level
discriminator Dy to distinguish between real and generated
videos, which enhances the ability of the generator G by
capturing the global information over the entire video.

Specifically, we implement the model Dy using a 3D
convolutional neural network (3D CNN) to translate the input
video into a global feature. Then, we augment the extracted
feature with corresponding text embedding € to match the
conditioning text script, thus can verify whether the video is
semantically matched with the given script.

To align the generated video with the conditioning infor-
mation, the video discriminator Dy must learn to evaluate
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Algorithm 1 Training Algorithm for BOGAN

Step 1:
: Train region-level module by Eq. (12).
Step 2:
for k=1 to K do
Obtain random noise z ~ A (0, 1).
Get input p via combining z with text embedding €.
Produce synthetic video X = G(p).
Update discriminator D by minimising Eq. (16).
Update discriminator Dy by minimising Eq. (18).
Update generator G by minimising Eqs. (12), (17) and (19).
: end for

TPV IUNRE LN

—_ =

whether samples from generator G meet this conditioning
constraint. Hence, the loss for training Dy is defined as:

1
Lp, = —3 [logDy (X, &) +log (1 - Dy (¥',€))
+log(1 — Dy (X, )], (18)

where X, X’ and X are real video, mismatched real video and
our synthetic video, respectively. We define the corresponding
adversarial loss for training the generator G as

1 _
Ly = —glog(Dv(X, €)). (19)

E. Training Process

In this section, we introduce the training mechanism for
the proposed BoGAN. The training performance of video-
level and frame-level modules strongly depends on the quality
of text and word embeddings extracted from region-level
module. Thus, in order to effectively optimise the whole
model, we first train the region-level module and try to obtain
the satisfying text and word embedding. Specifically, as shown
in Algorithm 1, to effectively train the whole model, we divide
the training of the proposed model into two steps. In the first
step, to capture the relevance of the words and sub-regions
of video, we optimise our region-level multi-modal similarity
module using Eq. (12). In the second step, we fix the parame-
ters of the region-level model and train the rest architecture in
an alternative manner. For the discriminators D and Dy, we
update their parameters by minimising Eq. (16) and Eq. (18),
respectively. Meanwhile, for the generator G, its parameters
are adjusted by Eqgs. (12), (17) and (19).

IV. EXPERIMENTS

We evaluate and compare our proposed BoGAN model
with several state-of-the-art approaches, on two synthetic
text-to-video datasets (SBMG [6] and TBMG [6]) and two
real-world datasets (MSVD [7] and KTH [24]), with both
quantitative and qualitative evaluation metrics. A detailed
ablation study is performed to test the contribution of each
model component and a human study is performed to examine
the reality, relevance and coherence of the generated videos.
We finally evaluate the generalisation ability of our proposed
model.
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A. Datasets

Single-Digit Bouncing MNIST GIFs (SBMG) [6] is a syn-
thetic dataset that has single handwritten digit bouncing inside
a 64 x 64 frame. It is composed of 12,000 GIFs and every
GIF is 16 frames long, which contains a single 28 x 28 digit
moving left-right or up-down. Each GIF is accompanied with
single sentence describing the digit and its moving direction.

Two-Digit Bouncing MNIST GIFs (TBMG) [6] is an
extended synthetic dataset of SBMG which contains two
handwritten digits bouncing.

KTH Human Action Dataset [24] consists of 1200 videos
with 25 persons performing 3 actions (walking, running and
jogging). Each video has 16 frames with size 48 x 48 and the
script describes the action and direction of a person, such as
“person 8 is walking left-to-right” or “person 17 is running
right-to-left”.

MSVD Dataset [7] contains 1, 970 video snippets collected
from YouTube. There are roughly 40 available English descrip-
tions for each video. Since the combined visual and text quality
and consistency is mixed, following [6], we manually filter out
the videos about cooking and generate a subset of 421 cooking
videos.

B. Experimental Settings

1) Implementation Details: For a fair comparison, follow-
ing [6], we only focus on generating each video with size
48 x 48 and 16 frames, i.e.d; = 16, d, = d,, = 48. For
sentence encoding, the dimension of the input, hidden layers,
output in bi-LSTM are all set to 256, i.e., D = d, = 256. The
dimension of random noise variable z, i.e., d; is 100. All the
weights are initialised from a normal distribution with zero-
mean and standard deviation of 0.02. For the hyperparameters
in Sec. III-B, we set y = 5.0, 41 = 0.2 and u» = 0.1.
The slope of the leak in LeakyReLU is set to 0.2. In the
training, we use Adam [56] with f; = 0.9 to update the model
parameters. We set the mini-batch and learning rate to 64 and
0.0002, respectively.

2) Evaluation Metrics: For quantitative evaluation, FID [9]
is used to evaluate the quality of each frames, while the
FID2vid [10] is to measure both quality and temporal con-
sistency of the whole videos. In general, the smaller these
two values are, the better performance the method will be.
To further evaluate the video generation model quantitatively,
we adopt Generative Adversarial Metric (GAM) [57], which
is able to directly compare two generative models by having
them engage in a “battle” against each other.

C. Compared Methods

To evaluate the performance of our proposed method,
several state-of-the-art models are adopted for comparison,
including SyncDRAW [24], VGAN [11], GAN-CLS [1],
Cap2vid [25], TGANs-C [6], T2V [5] and MoCoGAN [13].
Since the original VGAN and MoCoGAN attempt to gen-
erate videos in an unconditional manner, for a fair compar-
ison, here we additionally incorporate the matching-aware
loss into the discriminator of basic VGAN and MoCoGAN,
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the caption “Someone is pouring water into a bowl”.
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The experimental results of different methods on the SBMG dataset for the caption “Digit 9 is going up and down”, and on the MSVD dataset for

TABLE I
PERFORMANCE COMPARISON WITH STATE-OF-THE-ART ALGORITHMS (SMALLER IS BETTER)

SBMG TBMG KTH MSVD
Methods
FID FID2vid | FID FID2vid | FID FID2vid | FID  FID2vid
Sync-DRAW [24] | 69.75 | 4.54 |101.87| 526 |[5885| 572 [268.76| 1645
VGAN [11] 17031 | 659 | 168.64 | 597 |[91.86| 501 |10557 | 12.53
GAN-CLS [1] |252.74| 459 |[24728| 619 |1276| 7.50 | 72.74 | 10.53
Cap2vid [25] | 40.38 | 3.13 | 53.06 | 522 |[78.09| 653 |186.69| 12.51
TGANs—C [6] 63.05 | 484 | 5759 | 536 [60.05| 409 |149.12| 13.68
T2V [5] 13024 | 481 |[153.61| 691 |77.17| 590 |176.89 | 13.40
MoCoGAN [13] | 89.14 | 4.66 | 9501 | 554 |4853| 443 | 8029 [ 11.89
BoGAN (Ours) | 4757 | 3.2 | 4831 | 422 |29.84| 3.63 | 5701 | 938
TABLE II

and enable them to generate videos conditioning on cap-
tions. Likewise, the original GAN-CLS model focuses on
image generation from text. For video generation, we directly
extend the architecture by replacing 2D convolutions with
3D convolutions.

D. Quantitative Evaluation

1) Comparison via FID and FID2vid: To evaluate the
performance of our method, we compute the quantitative
evaluation metrics FID and FID2vid on both synthetic and
real-world datasets. Shown in Tab. I, our proposed method
achieves state-of-the-art performance on the TBMG, KTH, and
MSVD datasets, and obtains highly comparable results on the
SBMG dataset compared to the best baseline method. That
means BoGAN is able to produce natural videos and photo-
realistic frames on both synthetic and real-world datasets.
Especially on the real video datasets, our model outperforms
the previous state-of-the-art methods in a large margin. The
results also demonstrate that our method is able to consider
not only spatial and temporal information, but also the global
and local information very well.

2) Comparison via GAM: To further evaluate the video gen-
eration model quantitatively, we adopt GAM [57] to “battle”
against with GAN-CLS and TGANs-C in the MSVD dataset.
From Tab. II, our BoGAN is able to beat the best performing
models.

E. Qualitative Evaluation

Fig. 3 depicts example results selected from two datasets,
a synthetic one and a real one. Results produced by other

MODEL EVALUATION WITH THE GAM METRIC ON THE MSVD DATASET.
WHEN rtest =~ 1, ryample < 1 MEANS THE FORMER BEATS THE LATTER

Battler | rtest  Tsample | Winner
BoGAN vs GAN-CLS [1] 1.07 0.68 BoGAN
BoGAN vs TGANs-C [6] 0.99 0.82 BoGAN

state-of-the-art methods are also displayed for comparison.
The results demonstrate that our BOGAN is able to generate
the whole video semantically matching with the language
description while keeping reality and coherence in frame-
level. For the synthetic data, although Cap2vid obtains the
best FID score on the SBMG dataset, it cannot capture the
coherence between each frames so that the visual results of
this method seem chaotic across the sequence of generated
videos. The results of TGANs-C and Sync-DRAW seem
well-organised in temporal, but the generated digit in each
frame is distorted. For the photo-realistic examples, VGAN,
TGANs-C and MoCoGAN obtain some plausible but blurry
results conditioning with the input description. Although the
generated video via GAN-CLS seems realistic, it contains
many noises in each frame and losses the movement across
frames. Instead, our model is able to generate natural and
photo-realistic frames with fine-grained details.

FE. Ablation Study

1) Quantitative Results: To investigate the effect of each
part in our proposed method, we conduct an ablation study
to compare the performance by removing some components,
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TABLE III

THE EFFECT OF DIFFERENT COMPONENTS OF THE PROPOSED METHOD,
EVALUATED ON SBMG AND KTH

SBMG KTH
Methods FID FID2vid | FID FID2vid
Region-Level LR 332.63 20.68 270.60 24.37
Frame-Level L 83.83 5.05 60.25 5.26
Video-Level Ly 118.55 5.54 55.75 5.58
Region L + Frame L 80.01 4.61 53.06 4.80
Region L + Video Ly 106.15 4.80 40.20 4.40
Frame L + Video Ly 63.05 4.84 35.64 4.18
Lr+ Lr + Ly (our final) 47.57 3.12 29.84 3.63

Fig. 4. Visual results for each component on SBMG, conditioned on “Digit
1 is going up and down”.

Timesteps

Fig. 5. The results for caption “Digit 3 and 1 is going up and down.”
generated by our BOGAN training on TBMG.

on the SBMG and KTH datasets. The quantitative results are
shown in Tab. III. The model with region-level loss (Lg) only
performs worst among all the variant models. This is accept-
able because neither frame-level coherence nor video-level
semantic matching is considered in the method. Moreover,
this method does not adopt an adversarial learning procedure,
which is important for producing realistic results. Compare to
Lr, Lr and Ly perform better, which demonstrates the effects
of frame coherence and video semantics. However, compared
to Lr and Ly individually, we find that incorporating the
region-level loss Lr can obtain better performance, which
proves that local region-level information is significant in
video generation. Finally, we use all the three losses into our
objective model, which has the best results.

2) Qualitative Results: Moreover, we exhibit the qualitative
results corresponding to each component in Fig. 4. To be
specific, only using Ly, the results can well exploit the
semantics (i.e., motion) from the given text, but lack the
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Convergence performance of BoGAN training on the different

“A man is cutting strawberry.
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- “A man is cutting beef.” - -
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Fig. 7. Example results of proposed BoGAN trained on MSVD dataset while
changing some significant words in the script.

detailed information in each frame. Conversely, when using
LF, the generated video obtains more promising visual per-
formance but a poor movement. Notably, if we only use Lg,
the synthesised images are meaningless since the details can
not be guaranteed when the global semantics and realism are
uncertain. Moreover, when combining temporal and spatial
information (i.e., Ly +LR), the generated video matches better
with the given script. Finally, by using all the losses, we obtain
the best visual results with promising temporal and spatial
information.

G. Human Study

Since FID and FID2vid only focus on measuring the realism
of the generated videos while ignoring the semantic alignment
between generated videos and descriptions, following [6], we
further conduct a human evaluation to compare our method
against other state-of-the-art methods. We randomly select
100 generated videos with corresponding descriptions from
the MSVD dataset and asked 30 human subjects (university
students) to score them. Evaluators measure the generated
videos with respect to three criteria: (1) Realism: the realism
of generated videos; (2) Relevance: the relevance between
generated videos and corresponding description; (3) Coher-
ence: the temporal coherence across consecutive frames. Each
criterion contains 10 rankings from 1 to 10 (bad to good).
For an objective annotation, each generated video must be
scoredwe by three evaluators at least. Then, we average the
ranking on each criterion of all the synthetic videos generated
by each method and obtain three metrics. Tab. IV shows the
results of the human study on the MSVD dataset. Our BOGAN
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TABLE IV

THE AVERAGE RANKING (HIGHER IS BETTER) ON EACH CRITERION OF
ALL THE GENERATED VIDEOS BY EACH APPROACH ON MSVD

Methods Realism | Relevance | Coherence
Sync-DRAW [24] 3.47 348 4.17
VGAN [11] 4.53 4.54 498
GAN-CLS [1] 5.69 5.80 6.06
Cap2vid [25] 4.40 4.59 4.42
TGANs-C [6] 4.87 4.97 5.35
T2V [5] 4.21 4.33 4.78
BoGAN (Ours) 7.52 7.76 8.52

“A woman pours a powdery substance into a bowl.”

woman  pours

P

Attention Ma

Fig. 9. Relation between each word and its sub-region. We take one of
the generated videos on MSVD as example and rank the words by similarity
between words and sub-regions of one frame. We highlight the top three words
in bold type.

consistently achieves the best performance across all the three
criteria.

Large-Scale Human Study: To compare the visual results
of our method and the baselines, we conducted a large-
scale user study on the Internet. To this end, we randomly
select 10 text-video pairs for each method and hence obtain
70 pairs in total. The participants evaluate each sample in
terms of three criteria, i.e., realism, relevance, and coherence.
Each video snippet is scored by at least 10 participants.
In practice, we obtain 3710 results in total, which means

IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 29, 2020

350 T T T T !
simultaneous
300 two steps
]
g 250
8
2
o 200
a
TR
150
100 1 1 1 1 1
0 2000 4000 6000 8000 10000 12000

Number of Iterations

(b) Results on MSVD

The FID distance of different training process on the synthetic (i.e., SBMG) and real-world (i.e., MSVD) datasets.
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Fig. 10. Failure case conditioned on “Someone scrubbing a zucchini with
brush under the running water from a faucet a sink”.

TABLE V

THE RESULTS OF LARGE-SCALE HUMAN STUDY. WE REPORT THE AVER-
AGE RANKING (HIGHER IS BETTER) ON EACH CRITERION OF ALL THE
GENERATED VIDEOS BY EACH APPROACH ON MSVD. BESIDES,
WE ALSO PROVIDE THE AVERAGE RANKING OF ALL
THE CRITERIA

Methods Realism | Relevance | Coherence | Average
Sync-DRAW 4.24 4.21 4.68 4.38
VGAN 4.96 4.95 5.25 5.05
GAN-CLS 5.86 5.86 6.08 5.93
Cap2vid 4.86 5.00 5.20 5.02
TGANs-C 5.21 5.27 5.56 5.35
T2V 4.74 4.88 5.11 491
BoGAN (Ours) 6.37 6.39 6.31 6.35

that each video snippet is scored by ~ 53 participants on
average. As shown in Table V, our BoOGAN achieves the best
performance compared with the baseline methods in all three
criteria. It demonstrates that our proposed method has the
ability to generate more photo-realistic videos from the given
descriptions.

H. Convergence and Generalisation Analysis

Since our BoOGAN involves a complex adversarial learning
procedure, we investigate the convergence performance. Fol-
lowing [6], we show the evolution of the generator network
G at the training stage to illustrate the convergence. Fig. 5
shows the visual quality of our generated video improves as
the iteration increases. In addition, we explore the convergence
of our proposed BoOGAN in FID distance on several benchmark
datasets. Fig. 6 shows that although our BoGAN involves
a complex adversarial learning procedure, it is still able to
converge on both the synthetic (i.e., SBMG and TBMG)

Authorized licensed use limited to: University of Exeter. Downloaded on July 15,2020 at 06:24:32 UTC from IEEE Xplore. Restrictions apply.



CHEN et al.: SCRIPTED VIDEO GENERATION WITH A BOTTOM-UP GAN 7463

“Digit 8 is going left and right.”

e lal el elelolele s s s lslsl el s
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“Digit 9 is going up and down.”
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“Digit 3 is going up and down.”
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“Digit 0 is going left and right.”

Fig. 11. The generated samples of BOGAN on the SBMG dataset.

“Digit 7 is going up and down, digit O is going left and right.”
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“Digit 3 is going up and down, digit 1 is going up and down.”

M ¢ al 3| 3| 3
HEHEDEGEHHEBEEINT

“Digit 8 is going left and right, digit 8 is going left and right.”

B AR 2 A S

“Digit 2 is going up and down, digit 2 is going up and down.”
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“Digit 1 is going left and right, digit 1 is going up and down.”
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“Digit 2 is going left and right, digit 2 is going up and down.”
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Fig. 12. The generated samples of BOGAN on the TBMG dataset.

and real-world datasets (i.e., KTH and MSVD). Moreover, datasets (e.g., SBMG, TBMG or KTH) than on complex
the performance of FID converges more quickly on simple datasets (e.g., MSVD).
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“Person 04 is running left to right.”
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Fig. 13.

TABLE VI
RESULTS OF BOGAN WITH DIFFERENT RESOLUTIONS ON MSVD

Video Resolution | 48 x 48 | 64 x 64 | 128 x 128
FID 57.01 74.55 118.95
FID2vid 9.38 9.85 12.08

To verify the generalisation ability of our proposed method,
we test how sensitive the generated videos are to the unseen
input sentences by replacing some significant words in the
input descriptions. The generated videos are shown in Fig. 7.
When we change some words in the input descriptions, the
relevant sub-regions of the generated videos are changed
accordingly while other parts are constant. This indicates that
our proposed model is able to catch subtle semantic difference
of the text description when generating videos.

1. More Discussions

1) Results on Higher-Resolution Videos: Moreover, we
extend BoGAN to generate higher-resolution videos (64 x 64
and 128 x 128) on MSVD. From Table VI, our model is able
to obtain competitive results.

2) Analysis for Hyper-Parameter Settings: From Tab. VII,
when changing hyper-parameter values, the performances
become worse since the attention modules are impacted by
unsuitable values of hyper-parameters y1, ¢« and y (too small

R e

The generated samples of BOGAN on the KTH dataset.

TABLE VII
DISCUSSION OF HYPER-PARAMETERS 1, (¢t AND y ON MSVD

B 0002 | 002 | 02 2 20
FID | 16563 | 169.16 | 57.01 | 168.96 | 149.38
p2 =0.1,7=50 | EDovid | 1459 | 1372 | 938 | 14.15 | 13.73
12 0001 | 001 0.1 1 10
FID | 185.09 | 18046 | 57.01 | 187.04 | 163.00
m =02,y=50 | ppovid | 1491 | 1379 | 938 | 1445 | 1698
5 0.05 0.5 5 50 500
FID | 256.13 | 21742 | 57.01 | 99.67 7
1 =02,p2 =01 | Epoyid | 16.14 | 1496 | 938 | 11.80 /
TABLE VIII

DISCUSSION OF HYPER-PARAMETERS A1 AND A2 ON MSVD

A1 0.001 0.01 0.1 1 10 100
FID 102.45 | 184.12 | 147.39 | 57.01 88.87 173.31
A2 =1 | FID2vid 12.33 14.87 14.46 9.38 11.39 16.45
A2 0.001 0.01 0.1 1 10 100
FID 67.22 51.54 58.68 57.01 | 181.82 | 194.85
A1 =1 | FID2vid 10.31 9.22 9.34 9.38 15.27 17.16

or too large). From Tab. VIII, compared with L (4;), the
results are more sensitive to Ly (42).

3) Effectiveness of Two-Steps Training Process: To evaluate
the effectiveness of the two-steps training process, we conduct
an experiment to compare the performances of generative
models when using different training methods, i.e., two-steps
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Fig. 14. The generated samples of BOGAN on the MSVD dataset.

and one-step (simultaneous). As shown in Figure 8, the
performance improves more quickly when using the two-
steps training process on both synthetic (i.e., SBMG) and
real-world (i.e., MSVD) datasets. Especially on the more
complex dataset MSVD (Figure 8 (b)), our two-steps method
obtains a more impressing performance compared with the
simultaneous approach, which demonstrates the effectiveness
of our proposed training method.

4) Visual Results for Region-Level Module: To further
demonstrate the effectiveness of region-level module, we pro-
vide some visual results in Fig. 9 to visualise the relation
between each word and its relevant sub-region. Specifically,
given a description “A woman pours a powdery substance into
a bowl”, we use BOGAN to generate a video containing a serial
of frames. Then, we randomly choose a frame and visualise
the corresponding attention maps (see Fig. 9 (1)). For better
visualisation, we cover the selected frame by the produced
attention maps separately (see Fig. 9 (2)). Besides, we also
visualise the feature maps with the pseudocolor to make it
more clear (see Fig. 9 (3)). Based on the visual results, we rank
the words by the similarity between words and sub-regions in
the selected frame. We highlight the top three words in bold
type. The results show that our region-level module has the
ability to enforce the generator to focus on the most significant
word and the corresponding sub-region.

5) Failure Cases: From Fig. 10, given a complex and long
sentence with multiple entities, our model may not work well,
since the semantic information is hard to be captured.

6) More Qualitative Results: We present more generated
intact samples for qualitative evaluation. More results of

our BoOGAN on SBMG, TBMG, KTH and MSVD are shown
in Figs. 11, 12, 13 and 14, respectively.

V. CONCLUSION

Video generation from text is challenging due to the intrinsic
complexity. In this paper, we have proposed a novel Bottom-
Up Generative Adversarial Network (BoGAN) to ensure the
realism of the generated video and achieve the required multi-
scale semantic alignment. Specifically, to ensure the coherence
between generated frames and the semantic match between a
video and a language description, we have devised a bottom-up
optimisation mechanism that includes three levels, from local
to global. The proposed method outperforms its competitors
on the benchmarks, which demonstrates the power of the
architecture we have described. In terms of human study, our
proposed method also performs better than the competitors,
which is far more indicative of the value of our approach.
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