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Abstract

The challenge in blind image deblurring is to remove the
effects of blur with limited prior information about the na-
ture of the blur process. Existing methods often assume that
the blur image is produced by linear convolution with addi-
tive Gaussian noise. However, including even a small num-
ber of outliers to this model in the kernel estimation process
can significantly reduce the resulting image quality. Pre-
vious methods mainly rely on some simple but unreliable
heuristics to identify outliers for kernel estimation. Rather
than attempt to identify outliers to the model a priori, we
instead propose to sequentially identify inliers, and gradu-
ally incorporate them into the estimation process. The self-
paced kernel estimation scheme we propose represents a
generalization of existing self-paced learning approaches,
in which we gradually detect and include reliable inlier
pixel sets in a blurred image for kernel estimation. More-
over, we automatically activate a subset of significant gra-
dients w.r.t. the reliable inlier pixels, and then update the in-
termediate sharp image and the kernel accordingly. Exper-
iments on both synthetic data and real-world images with
various kinds of outliers demonstrate the effectiveness and
robustness of the proposed method compared to the state-
of-the-art methods.

1. Introduction

Image blur is a ubiquitous problem in image capture due

to variety factors such as camera movement [8, 6] and out-

of-focus effects [20]. The increasing usage of light-weight

hand-held photography devices (e.g. cell-phones) has sig-

nificantly increased the demand for practical image deblur-

ing, especially when facing imperfect imaging situations,
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(a) Blurry image (b) Xu and Jia [37]

(c) Pan et al. [26] (d) Ours

Figure 1. Deblurring the image with outliers. (a) A real blurry

image with outliers, containing saturated regions (e.g. pixels in the

green box) and unknown noise. (b)-(d) Deblurring results of Xu

and Jia [37], Pan et al. [26] and the proposed method, respectively.

such as selfies.

To deal with the image blur, a classical way is to adopt

a spatially invariant linear blur kernel k [8, 35], and then

model the blurred image y by a convolution process on the

latent sharp image x with the blur kernel k:

y = x ∗ k+ e , (1)

where ∗ denotes the convolution operator, and e refers to

additive noise. Here y ∈ R
n, x ∈ R

n, k ∈ R
m and

e ∈ R
n. Note that the blur kernel is often unknown. Thus,

blind image deblurring aims to estimate both x and k from
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the observation y, which is a highly ill-posed problem. In

practice, the challenge is often addressed by solving a non-

convex optimization problem [35, 9]. Most existing blind

image deblurring methods [8, 6, 25, 35, 9] assume that the

noise e in (1) follows an i.i.d. zero-mean Gaussian distri-

bution. However, these approaches often generate visual

artifacts in the deblurred image, as the model (1) and the

i.i.d. Gaussian assumption are too restrictive to model real

blurred images.

In general, outliers to the above model arise primarily

[7] from non-Gaussian noise (e.g. impulse noise) [2], sat-

uration [7, 33], and nonlinear camera response functions

(CRF) [32]. Non-blind deconvolution methods, which as-

sume the kernel k is known, have been developed recently

[7, 33] to deal with outliers, but blind image deconvolu-

tion, specifically kernel estimation, for such data has re-

ceived far less attention. For blind image deblurring, al-

though the influence of the nonlinear CRF on kernel estima-

tion can be avoided through preprocessing [32], saturation

and non-Gaussian noise cannot be so easily addressed [26]

(see Figure 1). Existing kernel estimation methods have at-

tempted to address the problem of outliers to the model via

simple preprocessing techniques [33], and/or loss functions

that are claimed to be robust to specific noise distributions

[7, 26, 37] (e.g. �1-loss corresponding to Laplacian distribu-

tion). Others have defined heuristics for identifying and re-

moving problematic areas of images [13, 9], but these meth-

ods typically only address a specific cause of such noise,

and fail to generalize.

As with general parameter estimation problems, fitting

the model to data with outliers typically results in a grossly

distorted estimate. However, identifying outliers a priori is

difficult, which requires sorting out and analyzing the in-

liers. We thus propose here an extension of the self-paced

learning (SPL) for deblurring images with outliers, which

attempts to identify the confident inliers first.

The proposed self-paced kernel estimation method grad-

ually includes pixels into the model estimation, starting with

the obvious inliers, and moving on to the more challenging

decisions. While doing so, it also encourages a graph-based

correlation among the selected pixels. According to the se-

lected pixels, a gradient activation method is used to ob-

tain the intermediate image x with only the most significant

components. The kernel k is estimated using only the se-

lected inliers, and thus is unlikely to be affected by outliers.

In this paper, we make the following contributions:

• In contrast to existing methods that rely on heuristic

outlier removal processes or loss functions based on

specific outlier characterisations, we instead introduce

a robust kernel estimation scheme that incrementally

includes inlier pixels that are faithful to the model, by

the model itself.

• We propose a novel self-paced kernel estimation

scheme by binding the self-paced learning regime with

a gradient activation scheme. This approach automati-

cally activates the significant gradients that are benefi-

cial for kernel estimation on the selected inlier pixels.

• We propose a generalization to self-paced learning that

encourages the incorporation among the selected sam-

ples. For deblurring, we propose a graph-based regu-

larizer encouraging the selected inliers falling within

a neighborhood, since the connected pixels are more

beneficial than the isolated ones for kernel estimation.

2. Related work

Notation. Let A = [Ai,j ] ∈ R
m×n and v = [v1, ..., vn]

T ∈
R

n denote a matrix and a vector, respectively, where T de-

notes the transpose of a vector/matrix. Let 0 and 1 be vec-

tors with all zeros and all ones, respectively. Let I be the

identity matrix. Let� and⊗ denote the element-wise prod-

uct and Kronecker product, respectively. Given a positive

integer n, let [n] = {1, ..., n}. Given any index set T ⊆ [n],
let Tc be the complementary set of T, i.e. Tc = [n] \ T.For

a vector v ∈ R
n, let vi denote the i-th element of v, and

vT denote the subvector indexed by T. Let diag(v) be a

diagonal matrix with diagonal elements equal to the vector

v. Let ‖v‖p be the �p-norm. Let ‖v‖M be the weighted �2
norm defined as ‖v‖2M = vTMv with M ∈ R

n×n.

Conventional blind image deblurring. To address the fact

that the general blind image deblurring is ill-posed, many

works focus on investigating image priors and regularizers.

A series of widely-used priors and regularizers are based

on image gradient sparsity, such as the total variational reg-

ularizer [5, 29], the Gaussian scale mixture prior [8], the

�1/�2-norm based prior [17], and the �0-norm regularizer

[39, 25]. Non-gradient-based priors have also been pro-

posed, such as the edge-based patch prior [30], the color line

based prior [19], and the dark channel prior [27]. Various

estimation strategies have also been proposed for effective

kernel estimation, such as edge-extraction based maximum-

a-posterior (MAP) [6], gradient activation based MAP [9],

and variational Bayesian methods [22, 1, 40]. Although

these methods generally work well, their performance de-

grades when input images are contaminated by outliers.

Image deblurring considering outliers. The influence of

outliers on image deblurring is attracting increasing atten-

tion [7, 13, 25, 33, 38], but most methods focus on non-

blind deconvolution [7, 37, 33]. Harmeling et al. [12]

proposed a multi-frame deblurring method which detects

saturated pixels using a thresholding operation, for exam-

ple. Xu and Jia [37] improve robustness to non-Gaussian

noise using an �1-loss function. Cho et al. [7] proposed

an expectation-maximization algorithm to iteratively detect

outliers and recover images specifically for non-blind de-

convolution. Whyte et al. [33] proposed a Richardson-Lucy
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[23] based deconvolution method to alleviate the ringing

caused by saturation. Xu et al. [38] applied a deep neu-

ral network to restore blurred images with saturated pixels.

For blind image deblurring, some methods exclude the

outliers via thresholding the blurred image [33, 9]. This

heuristic approach has a range of problems, including sen-

sitivity to the threshold value. Hu et al. [13] address low-

light images with saturation specifically by detecting the

light streaks explicitly. Pan et al. [25] proposed an �0-norm

based text image prior, which can also be used for saturated

images, but is impractical for handling non-Gaussian noise.

The fact that the nonlinearity in the CRF violates the model

in (1) was addressed by Tai et al. [32] which proposed to

estimate the CRF from the blurred image itself.

The closest approach to that proposed here is an iterative

energy minimization method proposed by Pan et al. [26],

which removes the outliers from selected edges at each iter-

ation through an empirically designed outlier identification

strategy.

Self-paced learning. Inspired by the learning process of

humans [3, 18], self-paced learning (SPL) was originally

proposed to learn a latent variable model by focussing first

the easy training data, where a set of samples is easy if it
admits a good fit in the model space [18]. SPL has since

been applied to a range of problems including visual track-

ing [31], event detection [14] and matrix factorization [42].

It is of particular interest here that Jiang et al. [14] proposed

selecting samples which are diverse, as well as easy.

3. Robust kernel estimation model
3.1. Blur model with outliers

Given a sharp image x and a blur kernel k, previous

works [26, 7] have modeled the blurred image as y =
f(x ∗ k) + enG, where f(·) is a nonlinear function which

produces the outliers and enG denotes noise with a non-

Gaussian distribution [37]. For example, for the case of

saturation, f(x ∗ k) clips the values to lie within the range

that the image representation can record (typically 0− 255)

[7]. However, the formulation of f(·) is usually unknown,

and analytically estimating it is difficult.

We propose here, in contrast, an additive model:

y = k ∗ x+ e+ o, (2)

where e represents the Gaussian noise, and o represents a

term producing the “outliers”, or the noise not modelled by

e. For example, if saturation is the only resource of outliers,

o implicitly absorbs a term f(x ∗ k) − x ∗ k correspond-

ing to saturation, which is unknown. This additive model

makes separately treating the Gaussian noise e and the out-

lier term o possible. Following [35, 9], the above model can

be equivalently represented as

y = H(k)x+ e+ o = A(x)k+ e+ o, (3)

where H(k) ∈ R
n×n and A(x) ∈ R

n×m are convolution

matrices associated with k and x, respectively.

3.2. Self-paced kernel estimation model

In kernel estimation, the Gaussian noise term e in (3)

can be easily handled via �2-loss (i.e. least square loss).

For o, we often do not have prior knowledge regarding the

distribution over it. However, it is reasonable to assume

o is sparse, since, usually only a small portion of pixels

are significantly contaminated. Motivated by this, we in-

troduce a binary vector v ∈ {0, 1}n to index the pixels,

where 0 is to indicate a possible outlier and excludes the

outlier from kernel estimation, and 1 is to indicate a se-

lected inlier. Following this, we can formulate the kernel

estimation problem as a self-paced learning problem. Let

the squared �2-norm be the regularizer of the blur kernel k,

and k ∈ K = {k | ‖k‖1 = 1, ki ≥ 0, ∀i}. We can model

kernel estimation as an SPL problem:

min
k ∈ K,
x, v ∈ Υ

1

2

n∑

i=1

vi(yi−[x∗k]i)2+λΩ(x)+
γ

2
‖k‖22+ρΥ(v),

(4)

where λ, γ and ρ are non-negative regularization weights,

Ω(·) denotes the regularizer for x and Υ(·) is the self-paced

regularizer controlling the sample selection pace [18, 14].

Defining Υ(v). By solving problem (4) given an appropri-

ate ρ, the SPL scheme will gradually incorporate the “easy”

pixel samples into the estimation process. Considering the

ill-posed nature of the problem, and the correlations be-

tween pixels corresponding to the same underlying content

(e.g. edges, flat areas, etc .), we also restrict pixel selec-

tion by defining the domain of v based on an underlying

weighted graph G = (V,E) [11]. We define G on a lattice

structure on the elements of v, i.e. letting V = [n] and let-

ting E represent the 2D neighborhood relationship among

vi’s, and denote the edge weights with c : E → R
+
0 . In our

implementation, we let c(e) = 1, ∀e ∈ E to indicate the dis-

tances between the neighbor vertices on the graph. With this

definition, we can restrict v in a graph structured domain

[11] by identifying its support with a forest F = (VF , EF )
(a union of individual trees) as

Ψ={v∈{0, 1}n|supp(v)= VF , F ⊆G,φ(F ) = b}, (5)

where VF denotes the vertices of the forest F , φ(F ) denotes

that the number of connected components of F and b is a

positive integer value. Because F ⊆ G, supp(v) should be

the vertices of a subgraph of G. Let g(v) denote the total

weight of edges in the forest F corresponding to supp(v).
Specifically, g(v) =

∑
e∈EF

c(e), when supp(v) = VF .

We define a novel self-paced regularizer as

Υ(v) = −�‖v‖1 + αg(v), (6)
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where −‖v‖1 is the easiness term from previous SPL stud-

ies [14, 18], g(v) is referred to as the connective term (as

it encourages connectedness among supp(v)), and α and �
are positive regularizer parameters (� = 2 and α = 0.5 are

used in this paper). The negative �1-norm controls the pace

at which pixels are included in kernel estimation, and favors

selecting easy pixels at first. In detail, if α = 0, given fixed

x and k, the conventional SPL scheme tends to select pixels

with 1
2 (yi − [x ∗ k]i)2 ≤ λ� [18]. Together with the graph

guided feasible domain Ψ, minimizing g(v) helps to trim

the isolated components in v and make the selected inliers

tend to flock together.

Regularization on x. For kernel estimation, focusing on

a subset of gradients of x alleviates problems caused by

fine-grained textures [37, 25, 9] and increases the accuracy

on the estimated k. As the gradient activation scheme has

shown its effectiveness at kernel estimation in [9], we use

this scheme to update the intermediate image x. Following

the technique in [10], we directly perform the gradient acti-

vation on image x instead of the image gradients [9], which

is helpful for identifying the outliers.

Let Dx ∈ R
2n be the gradients of x1. Instead of

encouraging the sparsity on gradients directly by letting

Ω(x) = ‖Dx‖1, we activate the nonzero gradients in

Dx while solving x by introducing an auxiliary variable

z ∈ R
2n and a binary indicator w ∈ {0, 1}2n, and letting

Dx = z � w. Moreover, to encourage the sparsity of the

activated gradients, we define a feasible domain of w as

Λ = {w | ‖w‖0 ≤ κ,w ∈ {0, 1}2n}, where the integer κ
controls the number of the zero elements in z.

Self-paced kernel estimation. Based on the regularizations

on x and v introduced above, we reformulate problem (4)

as the following self-paced kernel estimation problem:

min
k, v ∈ Ψ

x,w ∈ Λ, z

1

2

n∑

i=1

vi(yi − [x ∗ k]i)2 + λ‖z‖1 + γ

2
‖k‖22

+ ρΥ(v), s.t. Dx = z�w, k ∈ K,
(7)

where λ‖z‖1 is used to reduce the ill-posedness.

4. Self-paced robust kernel estimation
As the SPL [18, 14], we address problem (7) using an

alternating search strategy (ASS), that is, by alternatively

optimizing {x,w}, k and v, while fixing the other vari-

ables. The kernel estimation problem (7) can thus be solved

by addressing the subproblems introduced below.

4.1. Estimating the intermediate image x

Since x and w are coupled, we estimate the intermediate

image x (for fixed k and v) by optimizing x and w jointly

1D = [DT
v ,D

T
h]

T ∈ {−1, 0, 1}2n×n, where Dv and Dh denote the

convolution matrices for vertical and horizontal directions, respectively.

by solving the subproblem:

min
w∈Λ

min
x,ξ,z

1

2
‖ξ‖22 + λ‖z‖1,

s.t. ξ = diag(v)(y −Hx), Dx = z�w,

(8)

where ξ = diag(v)(y−Hx) denotes the fitting error given

the indicator vector v. In (8), κ reflects a rough knowledge

of the sparsity of Dx, and there are |Λ| = ∑κ
i=0

(
2n
i

)
feasi-

ble w’s in Λ. Problem (8) tends to find an optimal w from

Λ, which minimizes the regression loss ‖ξ‖22 by constrain-

ing x. The problem in (8) is hard to solve since it is a mixed

integer programming problem. We address it by relaxing it

to a convex quadratically constrained linear programming

(QCLP) [28] problem:

min
α∈A,θ∈R

θ, s.t. φ(α,w) ≤ θ, ∀w ∈ Λ, (9)

where θ is an auxiliary variable, φ(α,w) = −1
2‖α‖22 +

αTy,α ∈ Aw and A = ∩w∈ΛAw with Aw =
{α|HTdiag(v)α = DTβ, ‖diag(w)β‖∞ ≤ λ,α ∈
[−h, h]n}. α ∈ R

n and β ∈ R
2n refer to the Lagrangian

dual variables w.r.t. the two constraints in (8), respectively.

There is α = ξ∗ = diag(v)(y −Hx∗) at the optimality of

the inner problem w.r.t. x, ξ and z.

There are T =
∑κ

i=1

(
2n
i

)
constraints in problem (9),

making the problem difficult to address directly. However,

most constraints are inactive at the optimum as only a subset

of nonzero elements in Dx are significant for kernel estima-

tion. We thus seek to address problem (9) using a cutting-

plane method [24, 10], which iteratively detects the most

violated constraint and solves a subproblem w.r.t. the active

constraints. The overall cutting-plane method is shown in

Algorithm 1.

The most-violated constraints selection reflects the acti-

vation of the appropriate gradients in Dx. According to the

definition of φ(α,w), similar to [10], we first obtain β by

solving

min
β

1

2
‖DTβ −HTdiag(v)α‖22 +

r

2
‖β‖22, (10)

where the regularizer r
2‖β‖22 with r ≥ 0 is for reducing ill-

posedness. In practice, we set r = 2 and solve problem (10)

via a conjugate gradient (CG) algorithm. The most-violated

constraint can then be detected by choosing the κ largest

|βi| and recording their indices into a set Ct. Following that,

we update the active gradient set St = St−1∪Ct, and update

x by solving a convex equality-constrained problem which

is the primal representation of (9) with the active w’s:

min
x,zS

1

2
‖y −Hx‖2diag(v) + λ‖zS‖1

s.t. (Dx)S = zS, (Dx)Sc = 0.

(11)
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As shown in (11), we focus on the activated gradients (i.e.
(Dx)S) and restrict the inactive gradients to be 0 while solv-

ing for x. We address problem (11) using an alternating di-

rection method of multipliers (ADMM) [4] approach. Note

that, following [10], we set κ as the number of elements in

β0 whose absolute values are larger than 0.5× ‖β0‖∞.

Algorithm 1: Cutting planes for updating x

Input: Blurry image y, H, v and λ.

1 Initialize x0 = 1⊗ (1Ty/n), S0 = ∅,
ξ0 = diag(v)(y −Hx0), and iteration index t = 0;

2 while Stopping conditions are not achieved do
3 Find the most violated constraint: Compute

HTdiag(v)αt, get βt via solving problem (10),

and record the indices of κ largest |βt
j | into Ct+1;

4 Let St+1 = St ∪ Ct+1;

5 Subproblem solving: Solve subproblem (11)

using ADMM algorithm, obtaining xt+1;

6 Let αt+1 = diag(v)(y −Hxt+1), and t = t+ 1;

4.2. Estimating the blur kernel k

Given a fixed v and a fixed x, the kernel estimation sub-

problem is mink∈K 1
2‖y−x∗k‖2

diag(v)
+ γ

2 ‖k‖22, which is

a weighted least square problem. Since estimating such ker-

nels from image gradients has been shown to be more accu-

rate [6, 39, 27], we let ∇y and ∇x denote the gradients of

blurry image y and the given x, respectively, and address

the kernel estimation by solving the following quadratic

problem:

min
k

1

2
‖∇y −A(∇x)k‖2diag(v) +

γ

2
‖k‖22, (12)

where A(∇x) denotes the convolution matrix of the gradi-

ent image ∇x. Problem (12) is quadratic with respect to k,

which can be effectively addressed using the CG algorithm.

After obtaining k, we then set the negative elements ki as

0, and let k = k/‖k‖1, which ensures k ∈ K.

4.3. Updating the pixel selection vector v

By fixing x and k and substituting Υ(v) into (7), we up-

date the binary selection vector v by solving the subprob-

lem:

min
v∈Ψ

1

2

n∑

i=1

vi(yi − [x ∗ k]i)2 − ρ�‖v‖1 + ραg(v). (13)

Let l = 1
2 (y − Hx) � (y − Hx) denote the fitting error.

After reformulating (13), we address for v equivalently by

solving the following problem:

min
v∈Ψ

n∑

i=1

(ρ�− li)(1− vi) + ραg(v). (14)

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 2. Effectiveness of the proposed self-paced regularizer

Υ(v). (a) Blurred image y. (b) Initialization of the blur kernel k.

(c) The loss map l generated using the input y, the initialization of

k and an x initialized as 1⊗ (1Ty/n). (d) Estimated v by solving

the (14) with Υ(v) and the l in (c). (e) The estimated intermediate

x given the v in (d). (f) Estimated k and the final recovered image

with Υ(v). (g)-(i) show the results similar to (d)-(f) but with only

−‖v‖1 as the self-paced regularizer.

Detailed derivations are left in the supplementary material.

Solving problem (14) can be achieved by finding a sub-

forest F = (VF , EF ) in G such that the total weight

g(v) =
∑

e∈EF
c(e) is minimized and (ρ�− li)vi is maxi-

mized. After obtaining F , the solution v can be calculated

by letting vi = 1 if i ∈ VF and vi = 0 for others.

Problem (13) can be equivalently treated as a prize-
collecting Steiner forest (PCSF) problem [11], since ρ� −
li, ∀i ∈ V can be seen as the node prize and the edge weight

c(e), ∀e ∈ E can be considered as the edge cost, w.r.t. the

graph G. The PCSF problem seeks to find a forest contain-

ing multiple minimum-cost spanning trees where the prizes

on the nodes are maximized. Although the PCSF problem is

NP-hard, we can address it efficiently using a solver in [11],

relying on an iterative clustering scheme named Goemans-

Williamson scheme [15]. As shown in Figure 2, the pro-

posed graph guided self-paced regularizer Υ(v) and the

corresponding PCSF based solver tend to select connected

pixels instead of independently selecting the elements with

li ≤ ρ as the conventional SPL method [18], which leads to

better intermediate image and more accurate results.

4.4. Self-paced algorithm for kernel estimation

Based on the algorithms for the subproblems of updating

x, k and v, we summarize the alternative self-paced kernel

estimation method in Algorithm 2. To improve the robust-

ness, we implement the kernel estimation using a coarse-to-
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Algorithm 2: Self-paced kernel estimation

Input: Blurry image y, λ, γ, η > 1, ρmax.

1 Initialize k0 and x0 and ρ0;

2 for k = 1 : K do
3 Calculate lk = 1

2 (y −Hxk−1)� (y −Hxk−1),

and update vk by solving the PCSF problem (14);

4 Given vk and kk−1, update xk by solving problem

(8) via Algorithm 1;

5 Estimate kk according to problem (12);

6 Update pace parameter ρk = min{ηρk−1, ρmin}.

fine scheme following the image pyramid [8, 39].

Relying on the coarse-to-fine scheme, in Step 1 of Algo-

rithm 2, we initialize the blur kernel k0 with the result from

the previous coarser pyramid level. The x0 is initialized as

an image where all pixels’ values are set as the mean values

of yi’s, i.e. x0 = 1⊗ (1Ty/n). In Step 4, given fixed kk−1

and vk, we solve the gradient activation problem (8) and ob-

tain an intermediate image xk which only contains the most

significant gradients to fit the regions indicated by vi = 1.

The blur kernel k is then estimated based on indicator vk

and the xk containing only significant components.

Similar to the conventional SPL algorithms [18, 14], in

Step 6, we update the pace parameter ρ via a factor η ≥ 1,

where the minimum value of ρ is set as ρmin. Figure 3

records an example of the updating process of v and the

corresponding x in the iterations of Algorithm 2. In the

early stage, easy pixels (e.g. strong edges in Figure 3 (b)

and (g)) that mostly appear like inliers are involved first.

With the decreasing of the fitting error (i.e. li, ∀i ∈ [n])
and ρ, more complex components are gradually introduced

(e.g. regions containing complex details in Figure 3 (c)-

(e) and (h)-(j)). We stop SPL when the stopping condition

(
√
1Tlk−

√
1Tlk−1)/

√
1Tlk−1 ≤ ε is achieved, where ε is

a small tolerance parameter. The maximum iteration num-

ber K is set as 5 in our implementation. As shown in Figure

3 (e) and (j) the regions contaminated can be excluded from

the kernel estimation.

After obtaining the blur kernel, we recover the final sharp

image via non-blind deconvolution methods, such as the

sparse prior based method [20], the EM based method [7]

for images with outliers, and the method for image with sat-

urated regions [34].

5. Experiments

We evaluate the performance of the proposed method on

both synthetic and real images, and compare with the state-

of-the-art image deblurring methods. The proposed method

is implemented in MATLAB, which takes 3 minutes for es-

timating a 19×19 blur kernel from a 255×255 image with

(a) y (b) v1 (c) v2 (d) v3 (e) v4

(f) x and k (g) x1 (h) x2 (i) x3 (j) x4

Figure 3. The proposed self-paced scheme incrementally involves

pixels for kernel estimation. (a) Blurred image y. (b)-(e) The v in

iteration #1-#4 of Algorithm 2. (g)-(j) The intermediate image x
corresponding the v in (b)-(e). (f) Estimated k and recovered x.

an Intel Core i5 2.5 GHz CUP and 8 GB RAM.

5.1. Evaluation on synthetic data

We evaluate the effectiveness of the proposed method on

the synthetic data with non-Gaussian noise (salt-and-pepper

noise) and saturated regions.

Images with non-Gaussian noise. We first investigate a

benchmark dataset from Levin et al. [21], which consists of

32 blurred images by blurring 4 sharp images using 8 mo-

tion blur kernels. We add i.i.d. salt-and-pepper noise with

noise level 0.01 to the blurred images, and then perform ker-

nel estimation. The estimated kernels are used to recovering

the noise-free blurred images using the same non-blind de-

convolution method in [20]. In this way, the evaluation of

the kernel accuracies is not influenced by the performance

of the non-blind deconvolution method on noisy images

[43]. We measure the sum-of-squared-difference (SSD) er-

ror between the recovered results and the ground truth.

We compare the proposed method with the state-of-the-

art methods from Cho and Lee [6], Krishnan et al. [17],

Levin et al. [22], Xu and Jia [37], Sun et al. [30], Perrone

and Favaro [29], Pan et al. (Text) [25], Zhong et al. [43]

and Pan et al. [26], and record the cumulative curves of

SSD error ratio [21] in Figure 4 (a). As shown in the figure,

the performance of Pan et al. [26] and ours are much better

than that of others, and the proposed method performs the

best among the competitors.

We evaluate different methods with increasing noise

level from 0.01 to 0.1, and record the peak signal-to-noise

ratio (PSNR) values of different methods in Figure 4 (b)2. It

is observed that the performances of previous conventional

methods decrease seriously when noise level increases. The

performance of Pan et al. [26] degrades maybe because the

method is sensitive to the parameter setting. The proposed

method outperforms the other methods for all noise levels.

2Comparison under different noise levels is performed on the first im-

age with the largest kernel in the dataset of Levin et al. [21].
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Figure 4. Comparison on the synthetic data with outliers. (a) Cumulative curves of SSD error ratio for data with salt-and-pepper noise. (b)

SSD error for date contaminated by salt-and-pepper noise with increasing noise level. (c) Average PSNR values for data with saturation.

Images with saturation. To validate the proposed

method’s robustness on saturation, we first create a dataset

with 64 images with saturated ranges by blurring 8 ground

truth images using 8 motion blur kernels from [21]. For

dataset generation, we first stretch the intensity the ground

truth from [0, 1] to [0, 2] and apply the 8 different blur ker-

nel to generate blurry images. We then clip the image in-

tensities into [0, 1]. Finally, the Gaussian white noise with

standard derivation 0.005 is added to each blurred images.

We estimate blur kernels using each method and recover

the final sharp image using the same non-blind deconvolu-

tion method in [13] for comparison. We record the aver-

age PSNR values w.r.t. the 8 images for different methods

in Figure 4 (c). The performances of Pan et al. [26] and

ours are superior to other conventional methods because the

outliers are considered in these two methods. Furthermore,

most PSNR values of the proposed method are higher due

to the self-paced kernel estimation scheme.

Images without outliers. We also compare the proposed

method with the state-of-the-art methods on the noise-free

dataset [21]. The cumulative curves of SSD error is shown

in Figure 5 (a). On images without outliers, the kernel

estimation methods with outlier-handling process achieve

better performances than the conventional results, which

is identical to the results in [26] Specifically, the proposed

method achieves the best performance in this experiment.

5.2. Evaluation on real-world images

Images with saturation and unknown noise. We first con-

duct experiments on low-light blurry images, which are of-

ten contaminated by outliers such as saturation and non-

Gaussian noise. Apart from the example in Figure 1, we

perform an experiment on the other real-world images with

several saturated regions and unknown noise (See Figure 6

(a)). Although the blur kernels estimated by the methods

from [6, 25, 26] have clear trajectories, the corresponding

recovered images contain many ringing artifacts and blurry
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Figure 5. Comparison on the images without outliers. (a) Cumu-

lative curves of SSD error ratio for Levin et al. ’s synthetic dataset

[21]. (b) PSNR values for Köhler et al. ’s real-world dataset [16].

details. The methods from [9, 13] and our method recover

more details (such as the plate number) due to the more ac-

curate and noiseless blur kernels.

Images with saturated regions. Since the saturation is

a common and important origin [33] of the outliers, we

specifically investigate the performance of the proposed

method on an example with multiples saturated regions. We

compare our method with several state-of-the-art methods

seeking to handle saturation for deblurring [25, 13, 26]. As

shown in Figure 7, the results of the �0-norm based method

[25] and the robust kernel estimation method [26] suffers

blurry details and/or ringing artifacts because of the error

in the estimated kernel. However, our recovered image is

sharper and cleaner due to the accurate kernel. The method

of Hu et al. [13] is less ineffective than others since its light

streak detection process fails.

Images without outliers. We also study the benefits of

the proposed method on deblurring images without outliers.

Figure 8 (a) shows a real blurry image without outliers from

[39]. We put the v from the last iteration of the proposed

method at the top right conner of Figure 8 (e), which ex-

cludes some small scale edges that are hard to estimate ac-

curately and may confuse kernel estimation [41]. Figure 8

shows that the proposed method reveals more natural details

with less ringing artifacts.
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(a) Blurry image (b) Cho and Lee [6] (c) Xu and Jia [37] (d) Gong et al. [10]

(e) Pan et al. [25] (f) Hu et al. [13] (g) Pan et al. [26] (h) Ours

Figure 6. Deblurring results on a real-world image with saturation and unknown noise.

(a) Blurry image (b) Pan et al. [25] (c) Hu et al. [13] (d) Pan et al. [26] (e) Ours

Figure 7. Deblurring results on a real-world image with saturated regions.

(a) Blurry image (b) Xu and Jia [37] (c) Pan et al. [25] (d) Pan et al. [26] (e) Ours

Figure 8. Deblurring results on a real-world image without outliers.

Dataset from Köhler et al. [16]. A benchmark dataset

without outliers is also used to test the proposed method,

which contains 48 (800 × 800) real blurry images from 4

sharp images and 12 blur types. We mainly focus on the 32

blurry images with mostly-invariant kernels [36] and record

the comparison on PSNR values in Figure 5 (b), which sug-

gests that the performance of the proposed method is better

than most of the state-of-the-art methods and is on par with

the best result of previous methods.

More experimental results can be found in the supple-

mental material.

6. Conclusion

In this paper, we proposed a robust self-paced kernel

estimation method for blind image deblurring. To handle

the outliers for the blur model, the method gradually in-

volves inlier pixels based on model itself for kernel updat-

ing. Specifically, a novel graph-based self-paced regular-

izer was proposed to encourage the connectedness among

the selected pixels, and a gradient activation method is used

to update intermediate image with respected to the selected

pixels. Experimental results on both synthetic and real-

world data show the excellence of the proposed method.
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