This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3535356

Source-Free Elastic Model Adaptation for
Vision-and-Language Navigation

Mingkui Tan, Peihao Chen, Hongyan Zhi, Jiajie Mai, Benjamin Rosman, Dongyu Ji, Runhao Zeng

Abstract—Vision-and-Language Navigation (VLN) requires an
agent to follow given instructions to navigate. Despite the sig-
nificant progress, the model trained on seen environments has
a performance drop on unseen environments due to distribution
shift. To improve the generalization, existing method attempts to
apply test-time adaptation to VLN. However, it needs to access the
training data and all testing data for updating the model before
inference. The setting is not suitable for the real application
because it is hard for the agent to access training data and all
testing data when the agent is applied in a new environment.
In this paper, we consider a more practical setting with source-
free and online-inference test-time adaption. In other words, the
model can only access one testing sample for test-time adaptation.
In this setting, the model may suffer from catastrophic forgetting
of the learned knowledge and unstable parameter update issues.
To solve these challenges, we propose an elastic adaptation
model (EAM) that consists of an auxiliary decision model and a
sample replay mechanism. We use the online testing samples to
adapt the auxiliary decision model to new environments, which
cooperates with the frozen original model to make better action
decisions. The sample replay mechanism stores the historical
testing samples to make the adaptation process more stable. Our
method is model-agnostic and is effortless to be applied to most
existing methods. Experimental results show that our method
achieves stable performance improvement based on three existing
methods on three VLN benchmark datasets.

Index Terms—Multi-Modal, Vision-and-Language Navigation,
Test-Time Adaptation.

I. INTRODUCTION

N vision-and-language navigation (VLN) task, an agent is
required to follow natural language navigation instructions
and navigate to a specific target location [2]. Over recent years,
it has gained significant progress. However, existing methods
still suffer from the problem of insufficient generalization

This work was partially supported by National Natural Science Founda-
tion of China (NSFC) under Grants 62202311 and 62072190, the Shen-
zhen Natural Science Foundation (the Stable Support Plan Program) un-
der Grant 20220809180405001, Excellent Science and Technology Cre-
ative Talent Training Program of Shenzhen Municipality under Grant
RCBS20221008093224017, Ministry of Science and Technology Foundation
Project 2020AAA0106900, Key-Area Research and Development Program
Guangdong Province 2019B010155002, the Guangdong Basic and Applied
Basic Research Foundation under Grants 2023A1515011512.

Mingkui Tan, Peihao Chen, Hongyan Zhi, and Dongyu Ji are with the
School of Software Engineering, South China University of Technology,
Guangzhou, China. E-mail: mingkuitan@scut.edu.cn

Runhao Zeng is with Artificial Intelligence Research Institute, Shenzhen
MSU-BIT University, Shenzhen, China, and also with Guangdong-Hong
Kong-Macao Joint Laboratory for Emotional Intelligence and Pervasive Com-
puting, Shenzhen MSU-BIT University, Shenzhen, China.

Jiajie Mai is with City University of Hong Kong, Hongkong, China.

Benjamin Rosman is with School of Computer Science and Applied
Mathematics, the University of the Witwatersrand, Johannesburg South Africa.

Mingkui Tan, Peihao Chen are corresponding authors.

ability. Specifically, there are large differences between seen
scenes in the training stage and unseen scenes in the testing
stage. Due to the data distribution shift, the model that
performs well at training has a certain performance drop at
testing [3]. To improve the generalization ability, researchers
propose diversified data augmentation methods to expand the
training data [4]-[7]. However, it is still hard to represent the
target data distribution accurately, and it requires extra training
costs. Recently, researchers proposed a Test-Time Adaptation
(TTA) method to solve the problem of distribution shift in the
field of image classification [8]-[11]. At test time, the model
parameters are no longer fixed but adjusted dynamically to
adapt to the target data distribution. It inspires us to apply
TTA method to VLN task.

The existing method [1] has made a preliminary attempt on
it. To overcome the distribution shift, they devise a two-stage
training strategy. First, they train the model with supervised
and self-supervised objectives simultaneously over training
data. Second, they use the self-supervised module to further
update the model over testing data before inference. But the
existing method still has the following shortcomings. 1) It
designs a self-supervised task, which needs to retrain the
model using the training data. However, the training data
may be inaccessible due to privacy security issues in practical
scenarios. 2) It needs to obtain the complete test samples
to adjust the model parameters, and then conduct the final
inference using the adjusted model. However, it is usually hard
to obtain all test samples in advance especially in the actual
navigation process.

In order to solve the above problems, we consider a more
practical setting to apply TTA method. The setting has the
following characteristics, which are also shown in Figure 1.
1) Source-Free. We only obtain the trained model and do not
alter the training process, and thus our method can be applied
to most existing VLN methods. 2) Online-Inference. The test
samples arrive as data streams, with only a single test sample
available at each testing step, which is more in line with reality.
However, it is challenging to adapt the model parameters under
this setting. 1) The model may suffer a catastrophic forgetting
of the learned knowledge in the parameters adaptation process.
2) It is hard for a single test sample to represent the target
data distribution accurately. It will lead to unstable updates
when only using the single test sample to adjust the model
parameters directly.

We propose an elastic adaptation model (EAM) method to
solve the above challenges. Specifically, we design an auxiliary
decision model and combine it with the original model to
form a two-branch structure. It avoids the forgetting of old

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:32:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3535356

. Im
Samplel [SampIeZ (sample N J

Scene Change [
— Action

Samplel Sample2 E:j

(a) Existing Training and Testing Setting for VLN

Training —» Action

Phrase

Pre-Trained Model

Testing
Phrase

_ S
(Sample N

Pre-Trained Model
Training Data All Testing Data

@ﬁﬁ N e+

(b) Existing Test-Time Adaption Setting for VLN

— v
= -

S

) L J L Sample 3 J
| J

Sample 1 Sample 2

_ L
(c) Our Source-Free Online-Inference Adaption Setting

Fig. 1: (a) Since the large discrepancy between training and testing scenes, directly using the trained model for testing performs
poorly. (b) Existing method [1] attempts to mitigate this gap by retraining the model with a visual consistency self-supervised
loss on training data and all testing data. Although performance improvement is observed, this setting requires access to source
data, which is not available in the adaption phrase in most cases. Best, when we apply a trained model for VLN, the testing
data is observed in an online manner. It is hard for us to access all testing data at once. (c) We consider a practical setting
to apply elastic model adaptation to VLN. The adaptation of the pre-trained model does not depend on the training data. The
testing data is provided in the form of data streams. The model parameters are adjusted online based on the current test sample.

knowledge by keeping the original model and promotes the
learning of new knowledge by introducing an auxiliary deci-
sion model. Besides, we design a sample replay mechanism
to fully utilize historical test samples. These historical test
samples help us to estimate the target data distribution more
accurately. Experimental results on multiple VLN benchmark
datasets, namely R2R [2], RxR [12] and REVERIE [13], show
our proposed method obtains stable improvement on several
existing methods, namely RecBERT [14], HAMT [15], and
DUET [16].

To sum up, our main contributions are as follows:

o We introduce a more practical test-time adaptation setting
(i.e., without access to the training data and complete
testing data) to vision-and-language navigation task for
adapting the model to new environments more robustly.

o We propose an elastic adaptation model (EAM), which
has a two-branch architecture and a reply mechanism,
to handle the catastrophic forgetting and unstable update
problems in the above setting.

o Our method is model-agnostic and plug-and-play, outper-
forming existing methods in multiple VLN datasets.

II. RELATED WORK

Vision-and-Language Navigation. Visual navigation aims
at navigating to a specific position in an environment based on
RGB information [17]. As natural language is a natural way
to interact with agents and inform it of the navigation target
position, vision-and-language navigation [2] task has drawn
increasing attention in recent years. Existing work can be cat-
egorized into three main approaches to improve performance
in Vision-and-Language Navigation (VLN) tasks: multimodal
feature learning, designing efficient action decision strategies,
and data augmentation.

Vision-and-Language Navigation requires agents to accu-
rately comprehend instructions and the visual features of

the environment, where feature learning plays a crucial role.
Existing methods [18] commonly use ResNet networks pre-
trained on ImageNet to extract first-person RGB-D observa-
tion features and BERT networks to extract natural language
instruction features. These features from both modalities are
then concatenated along the channel dimension to achieve en-
vironmental perception. Typically, these features focus on the
characteristics of objects in the scene and instructions, helping
the agent recognize surrounding objects and the scene structure
from a first-person perspective [19]. However, this approach
of separately extracting single-modality features before fusion
might lead to the visual feature extractor failing to capture the
most relevant features as required by the instructions [20],
[21], thereby affecting navigation performance. To address
this, Gao et al. [22] proposed using a cross-attention mech-
anism to align and fuse the two types of modality features.
This fusion alignment helps the agent focus more on the part of
the instruction currently being executed, enhancing the agent’s
overall understanding of the task [23].

With the development of pre-trained models, researchers
have attempted to use multimodal models pre-trained on
large-scale internet image-text data [7], [14] or first-person
multimodal data [7] to extract visual and instruction features,
achieving good results. For instance, Hao et al. [24] enhanced
the joint representation ability of the feature extractor for
image-text inputs by using two pre-training tasks, masked
text prediction and action prediction, on indoor scene data.
To further expand the pre-training data, Hong et al. [14]
and Guhur et al. [7] proposed using image-text pairs from
the web and room descriptions from the AirBnB website
for multimodal representation model pre-training, enabling
the agent to perform excellently with only a few training
samples. Additionally, some researchers have tried to improve
the agent’s multimodal feature learning ability by modifying
the model structure.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:32:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3535356

Action decision strategies typically involve a deep neural
network aimed at receiving encoded multimodal information
and predicting a series of low-level navigation actions to drive
the agent to complete the navigation task. Early work [2] used
Recurrent Neural Networks (RNNs) to encode all multimodal
information from the navigation history process, outputting a
low-level navigation action at each time step and training using
reinforcement learning. The reward function mainly depends
on the distance between the agent and the goal, whether the
goal is reached, and the number of navigation steps. Due to the
sparse reward signals from the environment, it is challenging
for the agent to optimize its decision strategy [25]. Therefore,
researchers designed dense intrinsic rewards to provide clear
learning signals for the agent. For example, Wang et al. [25]
proposed using the match degree between instructions and nav-
igated trajectories as intrinsic rewards; Jain et al. [26], Ilharco
et al. [27], and Landi et al. [28] suggested that evaluation
metrics can also serve as valuable reward signals. Besides
reinforcement learning, Zhang et al. [29] found that alter-
nating between imitation learning and reinforcement learning
can effectively improve the agent’s navigation performance.
However, solely imitating real navigation trajectories can make
it difficult for the agent to adapt to imperfect trajectories during
testing [30]. To address this, Krantz et al. [30] proposed the
data aggregation strategy, alternating between using real navi-
gation trajectories and the current model-predicted navigation
trajectories to train the agent. Instead of directly predicting
actions, Hong et al. [14] proposed converting the navigation
action prediction problem into an instruction-path matching
problem, pre-collecting multiple paths from the environment
and selecting the most matching one. Although this method
increases the success rate, it also introduces the extra cost of
pre-exploring the environment. Additionally, to enhance the
generalizability of decision strategies in new environments,
researchers [31] proposed optimizing the policy network in a
self-supervised manner in the test environment. The commonly
used VLN dataset R2R [2] only contains 21,567 human-
annotated navigation instructions, making data scarcity a chal-
lenge for cross-modal matching and limiting VLN perfor-
mance. To address this, researchers have enhanced training
data by automatically generating navigation instructions [4],
navigation paths [32], and environments [5], [33]. Specifically,
Fried et al. [4] proposed a “speaker” model to describe any
randomly sampled navigation path, extending the navigation
instructions; Fu et al. [32] adopted an adversarial path sam-
pling strategy to automatically sample navigation paths that
are more challenging for the current agent, enhancing the
agent’s navigation ability in complex environments; Tan et
al. [5] randomly dropped some information at the environment
feature level and the environment object level to generate new
navigation environments. These data-driven approaches over-
came the limitation of sparse training data by automatically
generating data, improving the model’s generalization ability
and performance.

Test-Time Adaptation. TTA [8] method aims to solve the
problem of distribution shift through leveraging unlabeled test
samples to adjust the model parameters so as to improve the
performance at test time. According to signals and parameters

for adaptation, we summarize existing methods broadly as
follows. For the adaptation signals, existing methods include
entropy minimization [8], pseudo-label generation [34], [35],
and consistency maximization [10]. For adaptation parameters,
existing methods include batch norm statistics adaptation [36],
classifier adjustment [37], all parameter adjustment [11]. Re-
cently, TTA has been widely used in various domains, such
as visual question answering [38], image classification [39]-
[41], semantic segmentation [42]-[44], object detection [45]—
[48], person re-identification [49]. In VLN task, the problem of
distribution shift also exists [3]. How to apply TTA to VLN is
an open question. The existing method [1] makes a preliminary
attempt, but its setting does not satisfy the real application of
VLN. In this paper, we consider more practical setting.

Slow vs. Fast Learning. Slow-fast learning has emerged
as a significant concept in machine learning, addressing the
need to balance learning from data at different temporal
scales or different domains. For data at different temporal
scales, several studies have explored slow-fast learning in
temporal modeling [50], [51] and reinforcement learning [52],
where the slow component captures long-term dependencies
and trends, while the fast component adapts to more im-
mediate changes and fine-grained details. This approach has
shown improvements in tasks such as time-series forecasting
and decision-making efficiency. While for data at different
domains, incremental learning has obtained a considerable
development, which aims to enable a model acquire new
knowledge from new data while preserve old knowledge [53].
However, it faces a dilemma between slow forgetting of old
knowledge and fast adaptation to new knowledge. The slow
forgetting will cause an underfitting on new data, while the fast
adaptation will lead to a catastrophic forgetting. To solve the
problem above, slow vs. fast learning is proposed and attempts
to keep a trade-off between the slow forgetting and fast
adaptation [54], [55]. Motivated by it, we design a two-branch
structure that contains an original model and auxiliary model.
We freeze the parameters of the original model to preserve old
knowledge and adapt the parameters of the auxiliary model
to learn new knowledge. Hence, our model learns to balance
the preservation of old knowledge and the adaptation of new
knowledge.

III. APPROACH
A. Problem Formulation

Given an existing vision-and-language navigation model
denoted as f(x;6), which has been trained using the labeled
training data (X’ s , ys), our objective is to fine-tune this model
to adapt to the unlabeled testing data X' Traditional methods
propose a self-supervised module that provides supervised
objectives in the absence of ground-truth labels Y” during
the testing stage. However, these methods require retraining
the model parameters 6 using the training data and update the
model using all the testing data prior to the final inference.

In contrast, our approach tackles scenarios where we lack
access to the training data, and the testing data is sequentially
provided. Specifically, at each time step ¢, the model takes
the current test sample x; as input, updating the parameters

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:32:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and

content may change prior to final publication.

V’ r
3 Memory Buffer) Original Model
1 Feature Sequential
3 Extraction Modeling

Current Sample

Current Instr.

=t

Feature

Sequential
Extraction

Modeling

Current Traj.

Citation information: DOI 10.1109/TMM.2025.3535356

@ Freeze

{ @ Unfreeze

d
'
'
'

Action Decision y,, {

Final Decision y Cross-Entropy [

Yo
_________________________ < __E (¥,) <A
\Y &7 —! = 1

------------------------ —~ y —! !
: ' Action Decision ; | %‘ (- el
i : i : Vs i : Vs
e e S
P ,J ’ J t Forward
Lo t Backward

Fig. 2: General scheme of the proposed elastic adaptation model (EAM) for VLN task. We sample historical test samples from
memory buffer and combine them with current test sample to form a mini-batch. Besides, we construct an auxiliary decision
model to cooperate with the original model. The final decision is determined by both. We generate corresponding pseudo-label
and calculate cross-entropy loss to update the auxiliary decision model.

f to adapt the model to the current scene, and then predicts
navigation action using updated parameters.

Nonetheless, adapting the model in our setting poses several
challenges. Directly adapting the model to new scenes can
lead to catastrophic forgetting, where previous knowledge is
completely erased. Besides, using only a single test sample for
updating the model may result in unstable updates. Therefore,
we propose an auxiliary decision model (Section III-D) and a
sample replay mechanism (Section III-E) to overcome these
challenges.

B. Overview of Elastic Adaptation Model

Our test-time adaptation approach comprises two main
components, namely an auxiliary decision model and a
sample replay mechanism, which can be incorporated into
most of the existing VLN models. The goal of our approach
is to enhance the performance of the original model by
incorporating knowledge from test samples. To achieve this,
we introduce the auxiliary decision model, which is combined
with the original model to form a two-branch structure. The
original model is frozen so that the learned knowledge in the
training phase will not be forgotten. The auxiliary decision
model helps the original model to adapt to new scenes. These
two models mutually support each other to make the final
action decision together. To make the adaptation process more
stable, we propose a sample replay mechanism that stores the
historical test samples in a memory buffer. When adapting the
model to a new scene, the historical test samples and current
sample build a mini-batch, providing richer information for
updating the model in the testing phase.

The overall framework of our proposed method, which we
refer to as EAM, is illustrated in Figure 2. In the following
subsections, we will first revisit the existing methods for
vision-and-language navigation, followed by the introduction
of our EAM that adapts the existing methods to new scenes
in the testing phase.

C. A Revisit of Existing VLN Methods

We first introduce the basic process of existing methods
for vision-and-language navigation, which mainly involves

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY.

feature extraction, sequential modeling, and action decision.
During the navigation process, the agent receives navigation
instructions and visual observations from the environment.
A text encoder and a visual encoder are used to extract
features from these two inputs, respectively. Then a sequential
model (e.g., transformer [14], [24] or LSTM [2]) is used
to combine these features and the historical observation to
figure out an agent stage features. Finally, an action decision
model is utilized to select an executable action from a set
of candidate actions. The action decision is formulated as a
classification problem, taking the agent state features as input
and calculating the possibility distribution over all candidate
actions.

Existing methods leverage a combination of imitation learn-
ing (IL) and reinforcement learning (RL) techniques to train
the model [14], [56]. In the case of imitation learning, the
model is supervised using ground-truth action labels. On the
other hand, reinforcement learning provides feedback to the
model in the form of corresponding rewards.

D. Auxiliary Decision Model

Due to the scene distribution shift, the trained models
introduced in the last section struggle to perform navigation
tasks in the new scenes. A possible solution is to adjust
the model parameter according to the testing sample in an
unsupervised manner [8]. Since the ground-truth labels of the
testing samples are not available, some test-time adaptation
methods use the trained model to predict pseudo-labels and
use these pseudo-labels to adjust the models to the new scenes.
However, if we adapt the original model directly, it will
inevitably forget the old knowledge learned from the training
stage, resulting in a degradation of the generated pseudo-label
quality. The noisy pseudo-labels further lead to error accu-
mulation and catastrophic forgetting [11], which exacerbates
the degradation of the pseudo-label. It forms a vicious circle
and affects the model adaptation, causing a decline in the
performance. When the model starts to deteriorate, it may not
recover again [57]. To avoid forgetting, an intuitive method
is to reduce the learning rate to slow down the update of the
model. Though it relieves the forgetting of old knowledge, it

Downloaded on April 25,2025 at 10:32:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3535356

also restricts the model to learn new knowledge. We need
to keep a balance between avoiding the forgetting of old
knowledge and promoting the learning of new knowledge.

In response to the above problem, we propose to design
an auxiliary decision model, which has the same network
architecture as the original model. We combine the auxiliary
decision model with the original model to form a two-branch
structure. The final decision is determined by the two model
jointly. It avoids the forgetting of old knowledge by keeping
the original model frozen, and promotes the learning of new
knowledge by updating the auxiliary decision model. We
initialize the above two model through the trained parameters
at the beginning of inference.

Action Decision. In the testing stage, the original model
and auxiliary decision model use the same input for forward
propagation to obtain the corresponding action decision, re-
spectively. The final action decision of the two-branch struc-
ture is defined as the sum of the two above. The process can
be formulated as:

yo=fo(x;90)7 Ys :fs(x;es)a (1)
Y= Yo+ Ys, 2

where, y, and 6, are the action decision and model parameters
for original model; ys and 65 are the corresponding elements
for auxiliary decision model; x is the model input, including
text instructions and visual images.

Cross-Entropy Minimization. We consider to freeze the
original model and only update the auxiliary decision model
during back propagation. To update the model parameters, we
generate pseudo-label according to the final action decision
and optimize the cross-entropy loss through gradient descent
algorithm. The process can be formulated as:

[= CrossEntropy (v, ys), 3)
95 = 95 + 04V9517 (4)

where, « is the learning rate. The original model and auxiliary
decision model complement each other. The former remains
unchanged to relieve the forgetting problem. The latter adjusts
dynamically to adapt to the new environment. It achieves a
balance between avoiding the forgetting of old knowledge and
promoting the learning of new knowledge.

Sample Selection. The samples used to adjust the model
parameters should be reliable. If the predicted action of a
sample (i.e., a probability distribution over all possible actions)
has very high entropy, it indicates that the model is uncertain
about this particular sample. This uncertainty often arises
from samples with limited information, like an RGB image
of a plain white wall or an unclear instruction. Using these
samples for updating the model in the test phrase may hurt the
performance due to their biased and unreliable gradients [9].
Consequently, we set a confidence threshold to select the test
samples for updating the auxiliary decision model. Specifi-
cally, when the entropy of the original model’s action decision
is less than the threshold, the corresponding sample is used to
update the model. Otherwise, we do not calculate the loss to

Algorithm 1 The update of memory buffer.

Require: Current sample x, current index n, memory buffer
M, memory capacity M.
m = |M|. /I Calculate the number of samples
: if m < M then
M.append(x).
else
¢ = randint(0, n).
if i < M then
M[i] = x. /I Replace the i*" sample
8: end if
9: end if
Ensure: Updated memory buffer M.

/I Append the current sample

A O S

Algorithm 2 The replay of history sample.

Require: Current sample x, memory buffer M, batch size K.
1: m = |M|. [/l Calculate the number of samples
2: if m < K then

3: B =x. /I Return the current sample

4: else

50 Bp ~ M. [l Select K — 1 history samples
6: B = B, Ux. [/l Form the mini-batch

7: end if

Ensure: Mini-batch B.

avoid the disturbance of noise samples. Equation (3) can be
rewritten as:

I = I(Entropy (y,) < A) - CrossEntropy(y,ys), (5)
A=axInC, (6)

where,)\ is the confidence threshold; a is the confidence co-
efficient; C' is the number of possible actions. In addition, to
maintain the stability of the final action decision, the action
decision of the auxiliary decision model should also have a
high confidence before it is combined with the action decision
of the original model. Equation (2) can be rewritten as:

Y = Yo + I(Entropy(ys) < A) - ys. (7)

E. Sample Replay Mechanism

In our setting, the test samples are in the form of data
streams. The model can only touch a single test sample each
time. It is hard for a single test sample to represent the target
data distribution accurately. If we only use it to adjust the
model parameters, it will optimize the model to different local
optima each time, which leads to an unstable update. To solve
the above problem, a possible way is to reuse the historical
test samples. However, existing methods generally do not have
a retrieval operation for the test samples, i.e., the historical test
samples can not be obtained again.

To this end, we propose a sample replay mechanism to fully
utilize historical test samples. We design a memory buffer to
store test samples each time. We random select the historical
test samples from the memory buffer, and combine them with
the current test sample to form a mini-batch. We adapt the

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:32:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3535356

Algorithm 3 Elastic Adaptation Model (EAM) Workflow

Require: Current sample x, current index n, memory buffer
M, memory capacity M, batch size K
1: Memory Buffer Update:
22 m = |M| /I Calculate the number of samples in the
memory buffer
3: if m < M then

4 M.append(x) // Append the current sample to the
memory buffer

5: else

6: ¢ =randint(0,n)

7. if i < M then

8: M(i] = x /I Replace the ith sample in the memory

buffer
9: end if
10: end if

11: Replay of Historical Samples:

122 m = |M| /I Recalculate the number of samples in the
memory buffer

13: if m < K then

14. B = x // Return the current sample as the mini-batch

15: else

16: By ~ M /] Select K — 1 historical samples from the

memory buffer
17: B = By Ux /| Form the mini-batch with the current
sample

18: end if

19: Model Inference:

20: Use the mini-batch B for inference with the original model
and the auxiliary decision model

21: Obtain action decisions y, and ys from the original and
auxiliary models respectively

22: Final Decision:

23: Combine y, and y, to make the final decision y

24: Model Update:

25: Generate corresponding pseudo-label

26: Calculate cross-entropy loss to update the auxiliary deci-
sion model

Ensure: Final decision y and updated memory buffer M

model through the mini-batch to avoid the problem of unstable
update caused by a single test sample.

Note that the memory buffer will store the observations
and action decisions at each time step during the navigation
process. The model only interacts with the environment cor-
responding to the current test sample. With regard to the histor-
ical test samples, the model directly loads the stored observa-
tions for forward propagation and executes the stored actions
without interacting with the environments again. Therefore, it
still satisfies our setting mentioned in section I.

Memory Buffer Update. To avoid the unbearable storage
costs, we set the memory buffer as a data queue with a
fixed capacity of M. We update the memory buffer through
reservoir sampling [58] so that each stored sample has the
same probability to be retained or replaced. Specifically, for
the n'" sample, if the number of the samples in the memory

TABLE I: The number of instructions and trajectories in VLN
benchmark datasets.

Val-Seen Val-Unseen
Instr. Traj. Instr. Traj.
R2R [2] 1,020 340 2,349 783
RxR [12] 8,813 1,244 13,652 1,517
REVERIE [13] 1,423 515 3,521 1,328

buffer is less than the memory capacity M, the current sample
is appended to the memory buffer directly. Otherwise, we
random sample a value ¢ from O to n. If the value ¢ is less
than the memory capacity M, we replace the i*" sample in
the memory buffer with the current sample. The pseudo-code
is shown in Algorithm 1.

History Sample Replay. To fully utilize the historical test
samples, we random select stored samples from the memory
buffer, and combine them with the current sample to form a
mini-batch. We adjust the model parameters through the mini-
batch to avoid the problem of unstable update by a single
test sample. Note that we can not select enough historical
test samples to form a mini-batch when the number of the
samples in the memory buffer is less than the batch size. At
this moment, we choose to inference the current test sample
directly and do not use it to adjust the model parameters. The
pseudo-code is shown in Algorithm 2.

F. Elastic Model Adaptation and Inference

We summarize the whole inference process of our proposed
method. In the testing stage, the current test sample is obtained
in the form of data streams. And the historical test samples
are sampled from the memory buffer through the sample
replay mechanism. We form a mini-batch with the current
and historical test samples. The original model and auxiliary
model use the mini-batch for forward propagation and obtain
corresponding action decisions. We combine them to get the
final action decision and calculate the cross-entropy loss for
back propagation to update the auxiliary model. Then we
update the current test sample to the memory buffer. The above
process is repeated until all test samples are inferred.

It is worth noting that when the length of mini-batch is equal
to 1, it indicates that the total number of test samples in the
memory buffer is less than the batch size. We can not obtain
sufficient test samples from the memory buffer to from a mini-
batch. At this time, we only perform forward propagation and
do not use that it to adjust the model parameters.

IV. EXPERIMENTS
A. Datasets

We conduct our experiments on multiple VLN benchmark
datasets, i.e., R2R [2], RxR [12] and REVERIE [13]. Note
that we do not need to access the training data in these
datasets. Table I provides the statistical information about
these datasets.

R2R. It contains 1,123 trajectories from 64 indoor scenes
for validation. Each trajectory is associated with three different

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:32:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3535356

TABLE II: Comparison between our method and existing methods on R2R dataset. For RecBERT, HAMT, DUET, we report the
reproduced results using official checkpoints. The relative improvement brought by the incorporation of the existing test-time
adaption method DAVIS and our EAM are shown in parentheses.

Val-Seen Val-Unseen
TL | NE | SR 1 SPL 1 TL | NE | SR 1 SPL 1

Seq2Seq [2] 11.33 6.01 39 - 8.39 7.81 22 -
SF [4] - 3.36 66 - - 6.62 35 -
SMNA [56] - 3.22 67 58 - 552 45 32
RCM [59] 10.65 3.53 67 - 11.46 6.09 43 -
PRESS [60] 10.57 4.39 58 55 10.36 5.28 49 45
EnvDrop [5] 11.00 3.99 62 59 10.70 5.22 52 48
AuxRN [61] - 3.33 70 67 - 5.28 55 50
PREVALENT [24] 10.32 3.67 69 65 10.19 4.71 58 53
RelGraph [62] 10.13 3.47 67 65 9.99 4.73 57 53
AirBERT [7] 11.09 2.68 75 70 11.78 4.01 62 56
HOP [63] 11.26 2.72 75 70 12.27 3.80 64 57
RecBERT [14] 11.13 2.90 72.18 67.72 12.01 3.93 62.75 56.84

+ DAVIS* [1] 10.84(+2'6%) 2.83(+2_4%) 71.1](_1_5%) 66.74(_1.4%) 1].61(+3.3%) 3-91(+O<5%) 63.26(+0.3%) 57.34(+0,9%)

+ EAM (Ours) 10.7l(+3_8%) 2~73(+5.8%) 73.46(.,_1'7%) 69.34(.,_2'4%) 11.47(4_4‘5%) 3.93(.,_()‘()%) 64.20(+2_3%) 58.51(+3_1%)
HAMT [15] 11.15 2.51 75.61 72.18 11.46 3.62 66.24 61.51

+ DAVIS* [1] 11.36(,1‘9%) 2.99(,19,1%) 70.23(,7‘1%) 66.83(,7‘4%) 11.56(,0'9%) 3.79(,4_7%) 64.92(,2‘0%) 59.66(,3‘0%)

+ EAM (Ours) 11.07(_,_0,7%) 2.41(+4.0%) 76.98(+1_8%) 73.64(_,_2'0%) 11.33(4.1'1%) 3449(4.3_(,%) 68.20(4.3'()%) 63.37(.,.3‘0%)
DUET [16] 12.33 2.29 78.66 72.74 13.94 3.31 71.52 60.41

+ DAVIS* [1] 11.53649%) 239439 7757139 72-50(0.3%) 12.00¢414.0%) 377C139%) 65997790 57.67(4.5%)

+ EAM (Ours) 12.05(+2,3%) 2.26(.,.1_3%) 78.86(.,.0'3%) 73~39(+O,8%) 13.28(+4.7%) 3.23(.,.2.4%) 72.33(.,.1.1%) 61.35(“,4%)

instructions. All of samples are split into validation seen and
validation unseen sets with 56 and 18 scenes, respectively.

RxR. Its data scale is much larger than R2R and it solves the
problem of path biases existed in R2R. Besides, the instruc-
tions in RxR involve different kinds of languages, including
English, Hindi and Telugu.

REVERIE. The format of instructions in REVERIE is quite
different from the above. Instead of giving detailed instruc-
tions, it only provides high-level instructions that describe the
target position and object without step-by-step guidance.

B. Evaluation Metrics

We follow existing methods [14], [15] to evaluate the nav-
igation performance using trajectory length (TL), navigation
error (NE), success rate (SR) and success rate weighted by
path length (SPL). For fair comparison, we further employ
other evaluation metrics, such as normalized dynamic time
warping (nDTW) and success weighted by nDTW (sDTW) for
RxR, remote grounding success rate (RGS) and RGS weighted
by path length (RGSPL) for REVERIE. The details of each
metric are described as follows:

TL & NE. TL measures the agent’s final trajectory length
in meters. NE measures the geodesic distance from agent’s
final position to goal position in meters.

SR & SPL. SR measures the ratio of the agent executing
STOP action within 3 meters from the goal position. SPL is
SR multiplied by the ratio between the length of the shortest
path and the predicted path.

nDTW & sDTW. nDTW evaluates how well the predicted
path matches the ground-truth path. SDTW is based on nDTW
and only calculates the successful trajectories.

RGS & RGSPL. RGS is the ratio of the agent grounding
the target object successfully. And RGSPL is RGS weighted
by path length, which is similar with SPL. These two metrics
are used in the REVERIE dataset.

C. Implementation Details

We implement our method based on PyTorch framework
and Matterport3D simulator [64]. We focus on the discrete
environment where the agent navigates between pre-defined
viewpoints. Our proposed method EAM is based on multiply
existing mothods including RecBERT [14], HAMT [15] and
DUET [16]. The navigation model varies depending on the
baseline we use. We directly load the trained model pa-
rameters, avoiding any interference with the original training
process. We only retrain the model when the checkpoints are
not provided. We adapt our method on a single NVIDIA Titan
XP GPU. We use an Adam optimizer with a learning rate of
le-5. The confidence coefficient a is set to 0.4. The memory
capacity M is set to 32. The batch size K is set to 8.

D. Benchmark Methods

Our method can be applied to various existing methods in
the testing stage without altering the training process. To verify
the effectiveness of our method, we choose the following
existing methods as the benchmark.

RecBERT. This method [14] is based on the V&L BERT
model [65]. It uses the [CLS] token in the transformer as a
internal recurrent unit to encode histories, so that it does not
need to apply any external recurrent modules.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:32:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3535356

TABLE III: Comparison between our method and existing methods on RxR dataset. The relative improvement brought by the

incorporation of our EAM is shown in parentheses.

Val-Seen Val-Unseen
SR 1 SPL 1 nDTW © sDTW 1 SR 1 SPL ¢ nDTW t sDTW 1
Mono [12] 28.8 - 46.8 23.8 28.5 - 44.5 23.1
EnvDrop [5] 48.1 44.0 57.0 40.0 38.5 34.0 51.0 32.0
Syntax [66] 48.1 44.0 58.0 40.0 39.2 35.0 52.0 32.0
HOP [63] 494 45.0 58.0 40.0 423 36.0 56.6 33.0
ADAPT [67] 52.7 47.0 61.3 58.5 46.7 40.3 53.5 37.3
HAMT [15] 59.37 55.65 65.41 50.84 56.50 52.72 63.33 48.37

+ EAM (Ours)

60.14(,13%) 56.54(11.69%) 65.9810.9%) 51.46(112%)

5745¢17%) 53.74:1.99%) 64.19u1.4%) 49.08(11.5%)

TABLE IV: Comparison between our method and existing methods on REVERIE dataset. The relative improvement brought

by the incorporation of our EAM is shown in parentheses.

Val-Seen Val-Unseen
Navigation Grounding Navigation Grounding
SR 1 SPL 1 RGS 1 RGSPL 1 SR 1 SPL 1 RGS 1 RGSPL 1
Seq2Seq [2] 29.59 24.01 18.97 14.96 4.20 2.84 2.16 1.63
SMNA [56] 41.25 39.61 30.07 28.98 8.15 6.44 4.54 3.61
RCM [59] 23.33 21.82 16.23 15.36 9.29 6.97 4.89 3.89
FAST-MATTN [13] 50.53 45.50 31.97 29.66 14.40 7.19 7.84 4.67
ORIST [68] 45.19 42.21 29.87 27.77 16.84 15.14 8.52 7.58
SIA [69] 61.91 57.08 45.96 42.65 31.53 16.28 2241 11.56
AirBERT [7] 47.01 42.34 32.75 30.01 27.89 21.88 18.23 14.18
RecBERT [14] 51.79 47.96 38.23 35.61 30.67 24.90 18.77 15.27
HOP [63] 53.76 47.19 38.65 33.85 31.78 26.11 18.85 15.73
HAMT [15] 44.85 41.67 28.16 26.15 32.95 30.20 18.92 17.28
+ EAM (Ours) 46.10(+2_g%) 43.40(4_4‘2%) 28.82(.,_2'3%) 27.13(_,_3.7%) 34.59(4,5‘0%) 31.98(+6_0%) 19.91(_,_5.2%) 18.30(_,_6‘0%)

DUET [16] 71.75 63.94 57.41 51.14 46.98 33.73 32.15 23.03

+ EAM (OU.I‘S) 72.59(.'.1.2%)64.96(.,.1_6%)

57.83+0.7%) 51.80(+1.3%)

48.00(,2.2%) 35.6516.0%) 32.72(41.8%) 24.22(:52%)

HAMT. This method [15] is also based on the transformer
model. It explicitly encodes the historical information as a
sequence of previous observations and proposes a hierarchical
module to reduce the computational complexity.

DUET. This method [16] constructs a topological map to
extend the action space for efficient exploration. It proposes a
dual-scale graph transformer to encode fine-scale information
of local observations and coarse-scale information on a global
map simultaneously.

E. Performance Comparison

Test-time adaptation performance on R2R dataset. We
compare our method with existing methods on both validation
seen and unseen sets of R2R dataset. The results are shown in
Table II. For HAMT [15], our method gets better performance
in terms of multiple metrics, e.g., NE, SR and SPL. In detail,
we achieve 1.37% and 1.96% SR absolute improvement and
1.46% and 1.86% SPL absolute improvement on validation
seen and unseen sets, respectively, which demonstrates the
effectiveness of our method. Besides, our method also achieves
stable improvement based on RecBERT [14]. Specifically, we
increase SR from 62.75% to 64.20% and SPL from 56.84% to
58.51% on validation unseen set. When we apply our method

to the state-of-the-art method DUET [16], we still acquire
a considerable performance improvement on SR, increasing
from 71.52% to 72.33%. The experimental results on multiply
benchmark show that our method has strong general appli-
cability. It can be applied to most existing methods flexibly
without relying on specific models or algorithms.

For validation seen set, the scenes in this set is the same
as the training. Our model achieves comparable or even better
results than benchmark methods, which shows that our method
avoids forgetting old knowledge. For validation unseen set, the
agent has never seen the scenes in this set during training. Our
method still outperforms all benchmark methods in term of
multiple metrics, which shows that our method adapts to the
new environments effectively.

We also compare our method with the existing test-time
adaptation method DAVIS [1]. For a fair comparison, we
reimplement DAVIS on our testing setting, i.e., the training
data is not accessed in the testing phase and the testing sample
comes one by one. We name the reimplemented version as
DAVIS*. Under all three benchmark methods, DAVIS brings
limited and even negative improvement. We speculate that the
design of DAVIS is tailored for offline settings. In our setting,
when the model cannot access all test samples in advance, its

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:32:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3535356

TABLE V: More experiment results on navigation benchmarks

R4R R2R-Last CVDN R2R-Back
Method
SR SPL SR SPL SR SPL SR SPL
HAMT 44.15 4095 4534 40.89 1698 11.05 5223 49.30
+ EAM(ours) 4473 4199 4632 4173 1797 10.88 54.11 51.10

TABLE VI: Ablation studies on each component in our
proposed method EAM including the auxiliary decision model
and sample replay mechanism. Results are evaluated on vali-
dation unseen set of R2R dataset.

Val-Unseen
TLl NEJ SR1T SPL1T
HAMT [15] 11.46 3.62 66.24 61.51
+ EAM w/o ADM 11.37 473 54.79 48.23
+ EAM w/o SRM 11.53 3.66 66.96 62.08
+ EAM (Ours) 11.33 3.49 68.20 63.37

updates become unstable and are susceptible to the problem of
catastrophic forgetting, leading to performance degradation.

Test-time adaptation performance on RxR and
REVERIE datasets. We also conduct experiments on datasets
RxR and REVERIE. The experimental results are shown in
Table IIT and Table IV. We apply our method to benchmark
method HAMT to adjust the model parameters. For dataset
RxR, we increase SR from 56.50% to 57.45% and SPL from
52.72% to 53.74% on the validation unseen set. For dataset
REVERIE, we achieve 1.64% SR improvement and 1.78%
SPL improvement on the validation unseen set, respectively.
Furthermore, we outperform the state-of-the-art method DUET
by 0.84% and 1.02% in terms of SR on validation seen
and unseen set of REVERIE dataset, respectively. The ex-
perimental results show that our proposed method achieves
stable performance improvement over benchmark methods
on different datasets, which further demonstrates the general
applicability of our method.

Test-time adaptation performance on more navigation
benchmarks. As shown in Tab. V, we tested more naviga-
tion benchmarks, and the experimental results show that our
method has significant improvements over the baseline on
most metrics. R4R extends R2R by concatenating two adjacent
tail-to-head trajectories, and R2R-Last, similar to REVERIE,
uses only the last sentence of the original R2R instructions to
describe the final destination, both emphasizing long horizon
navigation; CVDN defines a task where the agent navigates
based on multi-turn question-answering dialogs, requiring un-
derstanding of human conversations with often ambiguous and
under-specified instructions; and R2R-Back introduces a new
VLN setup where the agent must return to its start location, re-
quiring memory of navigation histories and handling of vague
commands(e.g., "Go to the nightstand in the bedroom and
return to the start point.”). Experimental results demonstrate
that our method can effectively handle various long-distance
or instruction-ambiguous navigation tasks, further highlighting
the effectiveness of our approach.

FE. Ablation Studies

In this section, we evaluate the effectiveness of each com-
ponent within our method and explore the influence of hyper-
parameters on the performance. We conduct experiments on
R2R and use HAMT as benchmark method.

Effectiveness of Auxiliary Decision Model. We propose
an auxiliary decision model and combine it with the original
model. At test time, we only update the auxiliary decision
model and freeze the original model. To verify its effective-
ness, we design a variant that removes the auxiliary decision
model and updates the original model directly. We name the
variant as EAM w/o ADM. In Table VI, the performance of
the variant is severely degraded, even much lower than the
benchmark method, decreasing SR from 66.24% to 54.79%
and SPL from 61.51% to 48.23% significantly. It indicates
the importance of the auxiliary decision model. When directly
updating the original model, it is hard to preserve old knowl-
edge, leading to the problem of catastrophic forgetting and
noisy pseudo-labels. The model is difficult to adapt to the
new environments through the noisy pseudo-labels, resulting
in the deterioration of the model performance.

Effectiveness of Sample Replay Mechanism. We propose
a sample replay mechanism to fully utilize the historical
test samples to adjust the model parameters. To verify its
effectiveness, we design a variant that removes the sample
replay mechanism and only uses the current test sample to
adjust the model parameters. We name the variant as EAM
w/o SRM. In Table VI, compared with the benchmark method,
the variant only gets slightly improvement. While our method
outperforms the variant, increasing SR from 66.96% to 68.20%
and SPL from 62.08% to 63.37%. These experimental results
show the significance of the sample replay mechanism. It
avoids the bias of a single test sample and represents the
target data distribution more accurately through historical test
samples stored in the memory buffer.

Influence of Hyper-parameters. We conduct experiments
on different values of hyper-parameters to evaluate their effect
on the model performance. We focus on confidence coefficient
a, memory capacity M and batch size K. For the confidence
coefficient, we select its value from {0.2,0.3,0.4,0.5} as
shown in Figure 3 (a). This coefficient determines whether
the test samples are used to adjust the model parameters. If
the value is too small, most test samples will be screened
out and the model is hard to learn enough new knowledge
from the remaining limited test samples to adapt to the new
environment. If the value is too large, it will introduce some
high entropy samples which may hurt the performance. We
choose the value with the best performance (¢ = 0.4) as
the default setting. For the memory capacity, each unit of the
memory buffer only needs to store annotation information of
a certain episode, such as the scene name, episode ID, and the
path executed in that episode (represented by unique waypoint
IDs). One storage unit occupies approximately 0.36KB of
memory and does not require storing observation information
for each step within the episode. If our method is to be
used in real-world scenarios, such as on a mobile robot, each
memory unit will need to additionally store the observation

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:32:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3535356

10
(a) (b) (o)
68.5 68.5 68.5
68.20 68.20 68.20
= 680 = 680 = 680
g & 67.77 68.07 &
- - ~ 67.48
& 675 o 675 o 675 67.69
e & 67.43 &
67.0 67.13 67.0 67.0
g pe-7s 2 2 66.96
9 66.88 S S
S 66.5 S 66.5 S 665
wv wv wv
66.0 66.0 66.0
0.2 03 0.4 05 8 16 32 64 1 2 4 8

Confidence Coefficient (a)

Memory Capacity (M)

Batch Size (K)

Fig. 3: Ablation studies on hyper-parameters including confidence coefficient a, memory capacity M and batch size K. Results
are evaluated on validation unseen set of R2R dataset. We show the curve of success rate (SR) metric.

Turn to walk between the kitchen sink counters, then turn left. Pass the refrigerator and turn right. Wait in the hallway by the counter. \

(a) DAM (Our)

(b) HAMT

Fig. 4: Visualization of navigation examples using our method and benchmark method, respectively. The visualization results

are from validation unseen set of R2R datasets.

images at each step. Assuming a panoramic image size of
(1080, 256, 3) and that each episode lasts up to 15 steps, one
memory unit will require an additional 11.86 MB of storage.
This overhead is entirely acceptable for a mobile robot. We
select its value from {8,16,32,64}. As shown in Figure 3
(b), the performance gradually improves with the memory
capacity increasing. To comprehensively consider the model
performance and storage cost, we choose M = 32 as the
default setting. For the batch size, we select its value from
{1,2,4,8} as shown in Figure 3 (c). The batch size reflects
the number of samples that the model touches during each
inference. We sample more historical test samples from the
memory buffer to represent the target data distribution as the
batch size increasing. When the batch size is set to 1, the effect
is equal to removing the sample replay mechanism. Due to

the limitation of GPU memory, we do not further increase the
batch size to explore its influence and choose K = 8 as the
default setting.

G. Ablation Study of the Size of Testing Batch.

In our experiments, we assume that only one mobile robot
exists in the new scene. For each time step, this robot cap-
tures the most recent observation x, along with 7 historical
trajectories (i.e., batch memory buffers) to build a batch for
test-time adaptation. As for the situation where multiple robots
are in the new scene, these robots capture the most recent
observation z individually (number of x > 1). We can use
all these observations, together with batch memory buffers, to
update the model using our proposed elastic model adaptation
technique. Experimental results are shown in Table VII. Our

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:32:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3535356

elastic model adaptation is suitable for different numbers of
z. Using different robots’ current and historical observations
for model adaption improves performance.

TABLE VII: Ablation study of different numbers of z.

Testing Elastic

Bstch Size Adaptation Model TL L NE] SRt SPLT
1 X 1146 3.62 6624 6151
1 v 1133 349 6820 63.37
3 v 11.33 3.61 6797 6343
7 v 1147 358 68.86 64.39

Experimental results are shown in Table VII below. Our
elastic model adaptation is suitable for different numbers of
z. Using different robots’ current and historical observations
for model adaption improves performance.

H. Visualization Results

We visualize navigation trajectories obtained by our method
and compare them with the results of the benchmark method
HAMT in Figure 4. We show instructions and the panoramic
images observed by the agent at the start, intermediate, and
stop viewpoints. The red arrow indicates the direction decided
by the agent at each moment. The green tick on the final
image represents a successful navigation. The red cross means
that the navigation process is a failure. The corresponding
instruction that describes the navigation process is shown in
the green rounded rectangle on the top.

Given the same instruction and start viewpoint, the bench-
mark method fails to follow the instruction, while our method
navigates to the target position successfully. As shown in
Figure 4, the benchmark method fails to identify the orien-
tation of the kitchen sink and selects the wrong direction at
the beginning, causing the subsequent process to gradually
deviate from the target and fail the navigation task. Our method
follows the instructions, chooses to walk past the two kitchen
sinks, and successfully stops in the hallway indicated by the
instruction.

V. CONCLUSION

To improve the generalization ability, we consider a more
practical setting to apply TTA method to VLN task. We
propose an elastic adaptation model (EAM) to adapt the
model to new environments. We design an auxiliary decision
model and combine it with the original model to avoid the
forgetting of old knowledge and promote the learning of new
knowledge. Moreover, we design a sample replay mechanism
to fully utilize the historical test samples for model parameter
adjustment. Experimental results show that our method can
be applied to most existing methods and achieves better
performance in multiple VLN tasks.

REFERENCES

[1] Y. Lu, H. Zhang, P. Nie, W. Feng, W. Xu, X. E. Wang, and W. Y.
Wang, “Anticipating the unseen discrepancy for vision and language
navigation,” arXiv, 2022.

[2]

[3]

[4]

[5]

[6]

[7]

[8]
[9]

[10]
(11]
[12]

[13]

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

P. Anderson, Q. Wu, D. Teney, J. Bruce, M. Johnson, N. Siinderhauf,
I. D. Reid, S. Gould, and A. van den Hengel, “Vision-and-language
navigation: Interpreting visually-grounded navigation instructions in real
environments,” in CVPR, 2018, pp. 3674-3683.

V. S. Dorbala, G. A. Sigurdsson, R. Piramuthu, J. Thomason, and G. S.
Sukhatme, “Clip-nav: Using CLIP for zero-shot vision-and-language
navigation,” in CoRL, 2022.

D. Fried, R. Hu, V. Cirik, A. Rohrbach, J. Andreas, L. Morency,
T. Berg-Kirkpatrick, K. Saenko, D. Klein, and T. Darrell, “Speaker-
follower models for vision-and-language navigation,” in NeurIPS, 2018,
pp. 3318-3329.

H. Tan, L. Yu, and M. Bansal, “Learning to navigate unseen environ-
ments: Back translation with environmental dropout,” in NAACL-HLT,
2019, pp. 2610-2621.

C. Liu, F. Zhu, X. Chang, X. Liang, Z. Ge, and Y. Shen, “Vision-
language navigation with random environmental mixup,” in /CCV, 2021,
pp. 1624-1634.

P. Guhur, M. Tapaswi, S. Chen, I. Laptev, and C. Schmid, “Airbert: In-
domain pretraining for vision-and-language navigation,” in ICCV, 2021,
pp. 1614-1623.

D. Wang, E. Shelhamer, S. Liu, B. A. Olshausen, and T. Darrell, “Tent:
Fully test-time adaptation by entropy minimization,” in /CLR, 2021.

S. Niu, J. Wu, Y. Zhang, Y. Chen, S. Zheng, P. Zhao, and M. Tan,
“Efficient test-time model adaptation without forgetting,” in ICML, 2022,
pp. 16888-16905.

M. Zhang, S. Levine, and C. Finn, “MEMO: test time robustness via
adaptation and augmentation,” in NeurIPS, 2022, pp. 38 629-38 642.
Q. Wang, O. Fink, L. V. Gool, and D. Dai, “Continual test-time domain
adaptation,” in CVPR, 2022, pp. 7191-7201.

A. Ku, P. Anderson, R. Patel, E. Ie, and J. Baldridge, “Room-across-
room: Multilingual vision-and-language navigation with dense spa-
tiotemporal grounding,” in EMNLP, 2020, pp. 4392-4412.

Y. Qi, Q. Wu, P. Anderson, X. Wang, W. Y. Wang, C. Shen, and
A. van den Hengel, “REVERIE: remote embodied visual referring
expression in real indoor environments,” in CVPR, 2020, pp. 9979-9988.
Y. Hong, Q. Wu, Y. Qi, C. R. Opazo, and S. Gould, “VLN BERT: A
recurrent vision-and-language BERT for navigation,” in CVPR, 2021,
pp. 1643-1653.

S. Chen, P. Guhur, C. Schmid, and I. Laptev, “History aware multimodal
transformer for vision-and-language navigation,” in NeurlPS, 2021, pp.
5834-5847.

S. Chen, P. Guhur, M. Tapaswi, C. Schmid, and I. Laptev, “Think
global, act local: Dual-scale graph transformer for vision-and- language
navigation,” in CVPR, 2022, pp. 16516-16526.

S. Wang, Z. Wu, X. Hu, Y. Lin, and K. Lv, “Skill-based hierarchical
reinforcement learning for target visual navigation,” IEEE Transactions
on Multimedia, 2023.

E. Wijmans, A. Kadian, A. Morcos, S. Lee, I. Essa, D. Parikh, M. Savva,
and D. Batra, “Dd-ppo: Learning near-perfect pointgoal navigators from
2.5 billion frames,” arXiv preprint arXiv:1911.00357, 2019.

M. Engelcke, A. R. Kosiorek, O. P. Jones, and I. Posner, “Genesis:
Generative scene inference and sampling with object-centric latent
representations,” arXiv preprint arXiv:1907.13052, 2019.

R. Schumann and S. Riezler, “Analyzing generalization of vision
and language navigation to unseen outdoor areas,” arXiv preprint
arXiv:2203.13838, 2022.

J. Thomason, D. Gordon, and Y. Bisk, “Shifting the baseline: Sin-
gle modality performance on visual navigation & qa,” arXiv preprint
arXiv:1811.00613, 2018.

C. Gao, J. Chen, S. Liu, L. Wang, Q. Zhang, and Q. Wu, “Room-
and-object aware knowledge reasoning for remote embodied referring
expression,” in Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, 2021, pp. 3064-3073.

F. Landi, L. Baraldi, M. Corsini, and R. Cucchiara, “Embodied vision-
and-language navigation with dynamic convolutional filters,” arXiv
preprint arXiv:1907.02985, 2019.

W. Hao, C. Li, X. Li, L. Carin, and J. Gao, “Towards learning a generic
agent for vision-and-language navigation via pre-training,” in CVPR,
2020, pp. 13134-13 143.

X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y.-F. Wang,
W. Y. Wang, and L. Zhang, “Reinforced cross-modal matching and
self-supervised imitation learning for vision-language navigation,” in
Proceedings of the IEEE/CVF conference on computer vision and
pattern recognition, 2019, pp. 6629-6638.

V. Jain, G. Magalhaes, A. Ku, A. Vaswani, E. Ie, and J. Baldridge, “Stay
on the path: Instruction fidelity in vision-and-language navigation,”
arXiv preprint arXiv:1905.12255, 2019.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:32:10 UTC from IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

[27]

[28]

[29]

[30]

[31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

[41]

[42]
[43]

[44]

[45]
[46]
[47]

[48]

[49]

[50]

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3535356

G. Ilharco, V. Jain, A. Ku, E. Ie, and J. Baldridge, “General evaluation
for instruction conditioned navigation using dynamic time warping,”
arXiv preprint arXiv:1907.05446, 2019.

F. Landi, L. Baraldi, M. Cornia, M. Corsini, and R. Cucchiara, “Multi-
modal attention networks for low-level vision-and-language navigation,”
Computer vision and image understanding, vol. 210, p. 103255, 2021.
W. Zhang, C. Ma, Q. Wu, and X. Yang, “Language-guided navigation
via cross-modal grounding and alternate adversarial learning,” [EEE
Transactions on Circuits and Systems for Video Technology, vol. 31,
no. 9, pp. 3469-3481, 2020.

J. Krantz, E. Wijmans, A. Majumdar, D. Batra, and S. Lee, “Beyond the
nav-graph: Vision-and-language navigation in continuous environments,”
in Computer Vision—ECCV 2020: 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part XXVIII 16. Springer, 2020,
pp. 104-120.

Y. Lu, H. Zhang, P. Nie, W. Feng, W. Xu, X. E. Wang, and W. Y.
Wang, “Anticipating the unseen discrepancy for vision and language
navigation,” arXiv preprint arXiv:2209.04725, 2022.

T.-J. Fu, X. E. Wang, M. F. Peterson, S. T. Grafton, M. P. Eckstein, and
W. Y. Wang, “Counterfactual vision-and-language navigation via adver-
sarial path sampler,” in Computer Vision-ECCV 2020: 16th European
Conference, Glasgow, UK, August 23-28, 2020, Proceedings, Part VI
16. Springer, 2020, pp. 71-86.

D. An, Y. Qi, Y. Huang, Q. Wu, L. Wang, and T. Tan, “Neighbor-view
enhanced model for vision and language navigation,” in Proceedings
of the 29th ACM International Conference on Multimedia, 2021, pp.
5101-5109.

D. Chen, D. Wang, T. Darrell, and S. Ebrahimi, “Contrastive test-time
adaptation,” in CVPR, 2022, pp. 295-305.

P. Wang, Y. Yang, Y. Xia, K. Wang, X. Zhang, and S. Wang, “Infor-
mation maximizing adaptation network with label distribution priors for
unsupervised domain adaptation,” IEEE Transactions on Multimedia,
2022.

S. Schneider, E. Rusak, L. Eck, O. Bringmann, W. Brendel, and
M. Bethge, “Improving robustness against common corruptions by
covariate shift adaptation,” in NeurIPS, 2020, pp. 11539-11551.

Y. Iwasawa and Y. Matsuo, “Test-time classifier adjustment module for
model-agnostic domain generalization,” in NeurIPS, 2021, pp. 2427-
2440.

Z. Wen, S. Niu, G. Li, Q. Wu, M. Tan, and Q. Wu, “Test-time
model adaptation for visual question answering with debiased self-
supervisions,” IEEE Transactions on Multimedia, 2023.

A. Dubey, V. Ramanathan, A. Pentland, and D. Mahajan, “Adaptive
methods for real-world domain generalization,” in CVPR, 2021, pp.
14 340-14 349.

H. Huang, X. Gu, H. Wang, C. Xiao, H. Liu, and Y. Wang, “Extrap-
olative continuous-time bayesian neural network for fast training- free
test-time adaptation,” in NeurIPS, 2022, pp. 36 000-36 013.

L. Zuo, B. Wang, L. Zhang, J. Xu, and X. Zhen, “Variational neuron
shifting for few-shot image classification across domains,” IEEE Trans-
actions on Multimedia, 2023.

Y. Liu, W. Zhang, and J. Wang, “Source-free domain adaptation for
semantic segmentation,” in CVPR, 2021, pp. 1215-1224.

P. T. Sivaprasad and F. Fleuret, “Uncertainty reduction for model
adaptation in semantic segmentation,” in CVPR, 2021, pp. 9613-9623.
L. Shin, Y. Tsai, B. Zhuang, S. Schulter, B. Liu, S. Garg, I. S. Kweon, and
K. Yoon, “MM-TTA: multi-modal test-time adaptation for 3d semantic
segmentation,” in CVPR, 2022, pp. 16907-16916.

J. Kim, I. Hwang, and Y. M. Kim, “Ev-tta: Test-time adaptation for
event-based object recognition,” in CVPR, 2022, pp. 17724-17733.

K. Kotar and R. Mottaghi, “Interactron: Embodied adaptive object
detection,” in CVPR, 2022, pp. 14 840-14 849.

V. VS, P. Oza, and V. M. Patel, “Towards online domain adaptive object
detection,” in WACV, 2023, pp. 478-488.

C. Zhang, Z. Li, J. Liu, P. Peng, Q. Ye, S. Lu, T. Huang, and Y. Tian,
“Self-guided adaptation: Progressive representation alignment for do-
main adaptive object detection,” IEEE Transactions on Multimedia,
vol. 24, pp. 22462258, 2021.

F. Yang, K. Yan, S. Lu, H. Jia, D. Xie, Z. Yu, X. Guo, F. Huang, and
W. Gao, “Part-aware progressive unsupervised domain adaptation for
person re-identification,” IEEE Transactions on Multimedia, vol. 23, pp.
1681-1695, 2020.

M. Xu, M. Gao, Z. Gan, H.-Y. Chen, Z. Lai, H. Gang, K. Kang, and
A. Dehghan, “Slowfast-1lava: A strong training-free baseline for video
large language models,” arXiv preprint arXiv:2407.15841, 2024.

[51]

[52]

[53]

[54]

[55]

[56]

(571

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

[66]

[67]

[68]

[69]

M. Kim, T. Kim, and D. Kim, “Spatio-temporal slowfast self-attention
network for action recognition,” in 2020 IEEE International Conference
on Image Processing (ICIP). 1EEE, 2020, pp. 2206-2210.

X. Liu, C. Yang, B. Luo, and W. Dai, “Suboptimal control for nonlinear
slow-fast coupled systems using reinforcement learning and takagi—
sugeno fuzzy methods,” International Journal of Adaptive Control and
Signal Processing, vol. 35, no. 6, pp. 1017-1038, 2021.

A. Rosenfeld and J. K. Tsotsos, “Incremental learning through deep
adaptation,” TPAMI, pp. 651-663, 2020.

H. Zhao, Y. Fu, M. Kang, Q. Tian, F. Wu, and X. Li, “Mgsvf:
Multi-grained slow vs. fast framework for few-shot class- incremental
learning,” TPAMI, 2021.

J. Gao, X. Yao, and C. Xu, “Fast-slow test-time adaptation for online
vision-and-language navigation,” in Forty-first International Conference
on Machine Learning.

C. Ma, J. Lu, Z. Wu, G. AlRegib, Z. Kira, R. Socher, and C. Xiong,
“Self-monitoring navigation agent via auxiliary progress estimation,” in
ICLR, 2019.

H. Ye, Y. Ding, J. Li, and H. T. Ng, “Robust question answering against
distribution shifts with test-time adaptation: An empirical study,” in
EMNLP, 2023.

J. S. Vitter, “Random sampling with a reservoir,” ACM TOMS, pp. 37—
57, 1985.

X. Wang, Q. Huang, A. Celikyilmaz, J. Gao, D. Shen, Y. Wang,
W. Y. Wang, and L. Zhang, “Reinforced cross-modal matching and self-
supervised imitation learning for vision-language navigation,” in CVPR,
2019, pp. 6629-6638.

X. Li, C. Li, Q. Xia, Y. Bisk, A. Celikyilmaz, J. Gao, N. A. Smith, and
Y. Choi, “Robust navigation with language pretraining and stochastic
sampling,” in EMNLP-1JCNLP, 2019, pp. 1494-1499.

F. Zhu, Y. Zhu, X. Chang, and X. Liang, “Vision-language navigation
with self-supervised auxiliary reasoning tasks,” in CVPR, 2020, pp.
10009-10019.

Y. Hong, C. R. Opazo, Y. Qi, Q. Wu, and S. Gould, “Language and
visual entity relationship graph for agent navigation,” in NeurIPS, 2020,
pp. 7685-7696.

Y. Qiao, Y. Qi, Y. Hong, Z. Yu, P. Wang, and Q. Wu, “HOP: history-and-
order aware pre-training for vision-and-language navigation,” in CVPR,
2022, pp. 15418-15427.

A. X. Chang, A. Dai, T. A. Funkhouser, M. Halber, M. Niefner,
M. Savva, S. Song, A. Zeng, and Y. Zhang, “Matterport3d: Learning
from RGB-D data in indoor environments,” in 3DV, 2017, pp. 667-676.
X. Li, X. Yin, C. Li, P. Zhang, X. Hu, L. Zhang, L. Wang, H. Hu,
L. Dong, F. Wei, Y. Choi, and J. Gao, “Oscar: Object-semantics aligned
pre-training for vision-language tasks,” in ECCV, 2020, pp. 121-137.
J. Li, H. Tan, and M. Bansal, “Improving cross-modal alignment in
vision language navigation via syntactic information,” in NAACL-HLT,
2021, pp. 1041-1050.

B. Lin, Y. Zhu, Z. Chen, X. Liang, J. Liu, and X. Liang, “ADAPT:
vision-language navigation with modality-aligned action prompts,” in
CVPR, 2022, pp. 15375-15385.

Y. Qi, Z. Pan, Y. Hong, M. Yang, A. van den Hengel, and Q. Wu, “The
road to know-where: An object-and-room informed sequential BERT for
indoor vision-language navigation,” in /CCV, 2021, pp. 1635-1644.

X. Lin, G. Li, and Y. Yu, “Scene-intuitive agent for remote embodied
visual grounding,” in CVPR, 2021, pp. 7036-7045.

Mingkui Tan is currently a professor with the
School of Software Engineering at South China
University of Technology. He received his Bachelor
Degree in Environmental Science and Engineering
in 2006 and Master degree in Control Science and
Engineering in 2009, both from Hunan University
in Changsha, China. He received the Ph.D. degree
in Computer Science from Nanyang Technological
University, Singapore, in 2014. From 2014-2016, he
worked as a Senior Research Associate on computer
vision in the School of Computer Science, Univer-

sity of Adelaide, Australia. His research interests include machine learning,
sparse analysis, deep learning and large-scale optimization.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:32:10 UTC from IEEE Xplore. Restrictions apply.

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

This article has been accepted for publication in IEEE Transactions on Multimedia. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TMM.2025.3535356

Peihao Chen received the B.E. degree in Automa-
tion Science and Engineering from South China
University of Technology, China, in 2018. He is
working toward the PhD degree in the School of
Software Engineering, South China University of
Technology, China. His research interests include
embodied Al and multi-modal video understanding.

Hongyan Zhi received the B.E. degree inMechani-
cal Manufacture and Automation from South Chin-
aUniversity of Technology, China, in 2023. He is
working toward the M.E. degree in the School
of Software Engineering, South China University
ofTechnology, China. His research interests include
Deep Learning in Embodied Al

Jiajie Mai received his B.S. degree from the Beijing
University of Posts and Telecommunications in 2020
and his Master’s degree from King’s College Lon-
don in 2021. His research interests are non-convex
optimization and Neural Networks.

Benjamin Rosman obtained the PhD. degree from
the University of Edinburgh. His research interests
include robotics, artificial intelligence, decision the-
ory, and machine learning.

Dongyu Ji obtained the B.E. degree in the School
of Automation Scienceand Engineering from South
China University of Technology in 2020. He is cur-
rently working toward the M.E. degree in the School
of Software Engineering from SouthChina Univer-
sity of Technology. His research interests include
Deep Learning in Visual-and-Language Navigation.

Runhao Zeng received the PhD degree in soft-
ware engineering from South China University of
Technology, in 2021. He is currently an associate
professor at the Artificial Intelligence Research In-
stitute, Shenzhen MSU-BIT University. He has au-
thored or coauthored several peer-reviewed papers
on computer vision, machine learning on top-tier
conferences and journals, including the Proceedings
of NeurIPS, CVPR, ICCV, and TPAMI. His current
research interests include machine learning, com-
puter vision, with particular focus on video analysis.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:32:10 UTC from IEEE Xplore. Restrictions apply.

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.

