
Source-free Domain Adaptation
via Avatar Prototype Generation and Adaptation

Zhen Qiu1,4∗ , Yifan Zhang2∗ , Hongbin Lin1∗ , Shuaicheng Niu1 ,
Yanxia Liu1 , Qing Du1† and Mingkui Tan1,3,4†

1School of Software Engineering, South China University of Technology
2School of Computing, National University of Singapore

3Key Laboratory of Big Data and Intelligent Robot, Ministry of Education
4Pazhou Laboratory

Abstract
We study a practical domain adaptation task,
called source-free unsupervised domain adaptation
(UDA) problem, in which we cannot access source
domain data due to data privacy issues but only a
pre-trained source model and unlabeled target data
are available. This task, however, is very difficult
due to one key challenge: the lack of source data
and target domain labels makes model adaptation
very challenging. To address this, we propose to
mine the hidden knowledge in the source model
and exploit it to generate source avatar prototypes
(i.e., representative features for each source class)
as well as target pseudo labels for domain align-
ment. To this end, we propose a Contrastive Proto-
type Generation and Adaptation (CPGA) method.
Specifically, CPGA consists of two stages: (1)
prototype generation: by exploring the classifica-
tion boundary information of the source model, we
train a prototype generator to generate avatar proto-
types via contrastive learning. (2) prototype adap-
tation: based on the generated source prototypes
and target pseudo labels, we develop a new robust
contrastive prototype adaptation strategy to align
each pseudo-labeled target data to the correspond-
ing source prototypes. Extensive experiments on
three UDA benchmark datasets demonstrate the ef-
fectiveness and superiority of the proposed method.

1 Introduction
Unsupervised domain adaptation (UDA) has achieved re-
markable success in many applications, such as image classi-
fication and semantic segmentation [Yan et al., 2017; Liang
et al., 2019; Tang et al., 2020; Zhang et al., 2020]. The
goal of UDA is to leverage a label-rich source domain to im-
prove the model performance on an unlabeled target domain,
which bypasses the dependence on laborious target data an-
notation. Generally, UDA methods can be divided into two
categories, i.e., data-level UDA and feature-level UDA. Data-
level methods [Sankaranarayanan et al., 2018; Hoffman et
∗Authors contributed equally.
†Corresponding author.

al., 2018] attempt to mitigate domain shifts by image trans-
formation between domains via generative adversarial net-
works [Goodfellow et al., 2014]. By contrast, feature-level
methods [Ganin and Lempitsky, 2015; Wei et al., 2016] fo-
cus on alleviating domain discrepancies by learning domain-
invariant feature representations. In real-world applications,
however, one may only access a source trained model instead
of source data due to the law of privacy protection. As a re-
sult, many existing UDA methods are incapable due to the
lack of source data. Therefore, this paper considers a more
practical task, called source-free UDA [Liang et al., 2020;
Li et al., 2020], which seeks to adapt a well-trained source
model to a target domain without using any source data.

Due to the absence of source data as well as target do-
main labels, it is difficult to estimate the source domain dis-
tribution and exploit target class information for alleviating
domain discrepancy as previous UDA methods do. Such a
dilemma makes source-free UDA very challenging. To solve
this task, existing source-free UDA methods seek to refine
the source model either by generating target-style images
(e.g., MA [Li et al., 2020]) or by pseudo-labeling target data
(e.g., SHOT [Liang et al., 2020]). However, directly gen-
erating images from the source model can be very difficult
and pseudo-labeling may lead to wrong labels due to domain
shifts, both of which compromise the training procedure.

To handle the absence of source data, our motivation is
to mine the hidden knowledge in the source model. By ex-
ploring the source model, we seek to generate feature proto-
types of each source class and target pseudo labels for domain
alignment. To this end, we propose a new Contrastive Proto-
type Generation and Adaptation (CPGA) method. Specifi-
cally, CPGA contains two stages: (1) Prototype generation:
by exploring the classification boundary information in the
source classifier, we train a prototype generator to generate
source prototypes based on contrastive learning. (2) Proto-
type adaptation: to mitigate domain discrepancies, based on
the generated feature prototypes and target pseudo labels, we
develop a new contrastive prototype adaptation strategy to
align each pseudo-labeled target data to the source prototype
with the same class. To alleviate label noise, we enhance the
alignment via confidence reweighting and early learning reg-
ularization. Meanwhile, we further boost the alignment via
feature clustering to make the target features more compact.

ar
X

iv
:2

10
6.

15
32

6v
1 

 [
cs

.C
V

] 
 1

8 
Ju

n 
20

21



In this way, we are able to well adapt the source-trained model
to the unlabeled target domain even without any source data.

The contributions of this paper are summarized as follows:

• In CPGA, we propose a contrastive prototype generation
strategy for source-free UDA. Such a strategy can gen-
erate representative (i.e., intra-class compact and inter-
class separated) avatar feature prototypes for each class.
The generated prototypes can be applied to help conven-
tional UDA methods to handle source-free UDA.

• In CPGA, we also propose a robust contrastive prototype
adaptation strategy for source-free UDA. Such a strategy
can align each pseudo-labeled target data to the corre-
sponding source prototype and meanwhile alleviate the
issue of pseudo label noise.

• Extensive experiments on three domain adaptation
benchmark datasets demonstrate the effectiveness and
superiority of the proposed method.

2 Related Work
Unsupervised Domain Adaptation (UDA). UDA has been
widely studied in recent years [Tang et al., 2020; Jin et al.,
2020]. Most existing methods alleviate the domain discrep-
ancy either by adding adaptation layers to match high-order
moments of distributions, e.g., DDC [Tzeng et al., 2014], or
by devising a domain discriminator to learn domain-invariant
features in an adversarial manner, e.g., DANN [Ganin and
Lempitsky, 2015] and MCD [Saito et al., 2018]. Recently,
prototypical methods and contrastive learning has been in-
troduced to UDA. For instance, TPN [Pan et al., 2019] and
PAL [Hu et al., 2020] attempts to align the source and target
domains based on the learned prototypical feature represen-
tations. Besides, CAN [Kang et al., 2019] and CoSCA [Dai
et al., 2020] leverages contrastive learning to explicitly min-
imize intra-class distance and maximize inter-class distance
in terms of both intra-domain and inter-domain. However,
the source data may be unavailable in practice due to privacy
issues, making these methods incapable.

Source-free Unsupervised Domain Adaptation. Source-
free UDA [Kim et al., 2020] aims to adapt the source model
to an unlabeled target domain without using the source data.
Existing methods seek to refine the source model either by
pseudo-labeling (e.g., SHOT [Liang et al., 2020]) or by gen-
erating target-style images (e.g., MA [Li et al., 2020]). How-
ever, due to the domain discrepancy, the pseudo labels can
be noisy, which is ignored by SHOT. Besides, directly gen-
erating target-style images from the source model can be
very difficult due to training difficulties of GANs. Very re-
cently, BAIT [Yang et al., 2020b] proposes to use the source
classifier as source anchors and use them for domain align-
ment. However, BAIT requires dividing target data into cer-
tain and uncertain sets via prediction entropy of source clas-
sifier, which may lead to wrong division due to domain shifts.

Compared with the above methods, we propose to gener-
ate source feature prototypes for each class instead of directly
generating images. Besides, we alleviate the negative transfer
brought by noisy pseudo labels through confidence reweight-
ing and regularization.

3 Proposed Method
3.1 Problem Definition
We focus on the task of source-free unsupervised do-
main adaptation (UDA) in this paper, where only a well-
trained source model and unlabeled target data are accessi-
ble. Specifically, we consider a K-class classification task,
where the source and target domains share with the same label
space. We assume that the pre-trained source model consists
of a feature extractor Ge and a classifier Cy . Moreover, we
denote the unlabeled target domain by Dt={xi}nt

i=1, where
nt is the number of target samples.

The key goal is to adapt the source model to the target
domain with access to only unlabeled target data. Such a
task, however, is very challenging due to the lack of source
domain data and target domain annotations. Hence, con-
ventional UDA methods requiring source data are unable
to tackle this task. To address this task, we innovatively
propose a Contrastive Prototype Generation and Adaptation
(CPGA) method.

3.2 Overall Scheme
Inspired by that feature prototypes can represent a group of
semantically similar instances [Snell et al., 2017], we ex-
plore to generate avatar feature prototypes to represent each
source class and use them for class-wise domain alignment.
As shown in Figure 1, the proposed CPGA consist of two
stages: prototype generation and prototype adaptation.

In the stage one (Section 3.3), inspired by that the clas-
sifier of the source model contains class distribution infor-
mation [Xu et al., 2020], we propose to train a class condi-
tional generator Gg to learn such class information and gen-
erate avatar feature prototypes for each class. Meanwhile, we
use the source classifier Cy to judge whether Gg generates
correct feature prototypes w.r.t. classes. By training the gen-
erator Gg to confuse Cy via both cross-entropy Lce and the
contrastive lossLpcon, we are able to generate intra-class com-
pact and inter-class separated feature prototypes. Meanwhile,
to overcome the lack of target domain annotations, we resort
to a self pseudo-labeling strategy to generate pseudo labels
for each target data (Section 3.4).

In the stage two (Section 3.5), we adapt the source model
to the target by aligning the pseudo-labeled target features to
the source prototypes. Specifically, we conduct class-wise
alignment through a contrastive loss Lwcon based on a domain
projector Cp. Meanwhile, we devise an early learning reg-
ularization term Lelr to prevent remembering noisy pseudo
labels. Lastly, to make the feature more discriminative, we
further impose a neighborhood clustering loss Lnc.

The overall training procedure of CPGA can be summa-
rized as follows:

min
θg
Lce(θg) + Lpcon(θg), (1)

min
{θe,θp}

Lwcon(θe, θp) + λLelr(θe, θp) + ηLnc(θe), (2)

where θg , θe and θp denotes the parameters of the generator
Gg , the feature extractor Ge and the projector Cp, respec-
tively. Moreover, λ and η are trade-off parameters to balance
losses. For simplicity, we set the trade-off parameter to 1 in
Eq. (1) based on our preliminary studies.



Fixed Classifier 𝑪𝒚

𝓛𝒄𝒆

𝓛𝑐𝑜𝑛
𝑝

… 𝓛𝑐𝑜𝑛
𝑤 + 𝓛e𝒍𝒓 + 𝓛𝒏𝒄

Feature Extractor 𝑮𝒆 Feature 𝒒 Projector 𝑪𝒑

Target Images 𝒙
Generator 𝑮𝒈

Labels 𝒚

Noise 𝒛

Prototype 𝒑

…

Stage One: Prototype Generation

Stage Two: Prototype Adaptation

…

Pre-trained Model 𝑴

𝑪𝒚𝑮𝒆

…

𝑳𝒐𝒔𝒔 Update 𝑮𝒈

𝑳𝒐𝒔𝒔
Update
𝑮𝒆 and 𝑪𝒑

… …
…

…

Figure 1: An overview of CPGA. CPGA contains two stages: (1) Prototype generation: under the guidance of the fixed classifier, a generator
Gg is trained to generate avatar feature prototypes via Lce and Lp

con. (2) Prototype adaptation: in each training batch, we use the learned
prototype generator to generate one prototype for each class. Based on the generated prototypes and pseudo labels obtained by clustering, we
align each pseudo-labeled target feature to the corresponding class prototype by training a domain-invariant feature extractor via Lw

con, Lelr

and Lnc. Note that the classifier Cy is fixed during the whole training phase.

3.3 Contrastive Prototype Generation
The absence of the source data makes UDA challenging. To
handle this, we propose to generate feature prototypes for
each class by exploring the class distribution information hid-
den in the source classifier [Xu et al., 2020]. To this end,
we use the source classifier Cy to train the class conditional
generator Gg . To be specific, as shown in Figure 1, given
a uniform noise z∼U(0, 1) and a label y∈RK as inputs, the
generatorGg first generates the feature prototype p=Gg(y, z)
(More details of the generator and the generation process can
be found in Supplementary). Then, the classifier Gy judges
whether the generated prototype belongs to y and trains the
generator via the cross entropy loss:

Lce = −y logCy(p), (3)
where p is the generated prototype andCy(p) denotes the pre-
diction of the classifier. In this way, the generator is capable
of generating feature prototypes for each category.

However, as shown in Figure 3(a), training the generator
with only the cross entropy may make the feature prototypes
not well compact and prototypical. As a result, domain align-
ment with these prototypes may make the adapted model less
discriminative, leading to insufficient performance (See Ta-
ble 4). To address this, motivated by InfoNCE [van den Oord
et al., 2018; Zhang et al., 2021], we further impose a con-
trastive loss for all generated prototypes to encourage more
prototypical prototypes:

Lp
con=− log

exp(φ(p, k+)/τ)

exp(φ(p, k+)/τ)+
∑K−1

j=1 exp(φ(p, k−j )/τ)
, (4)

where p denotes any anchor prototype. For each anchor, we
sample the positive pair k+ by randomly selecting a gener-

(a) Training with Lce (b) Training with Lce+Lp
con

Figure 2: Visualizations of the generated feature prototypes by the
generator trained with different losses. Compared to training with
only the cross entropy Lce, the contrastive loss Lp

con encourages the
prototypes of the same category to be more compact and those of
different categories to be more separated. Better viewed in color.

ated prototype with the same category to the anchor p, and
sample K−1 negative pairs k− that have diverse classes with
the anchor. Here, in each training batch, we generate at least
2 prototypes for each class in the stage one. Moreover, φ(·, ·)
denotes the cosine similarity and τ is a temperature factor.

As shown in Figure 3(b), by training the generator with
Lce+Lpcon, the generated prototypes are more representative
(i.e., intra-class compact and inter-class separated). Interest-
ingly, we empirically observe that the inter-class cosine dis-
tance will converge closely to 1 (i.e., cosine similarity close
to 0) by training with Lce+Lpcon (See Table 4), if the feature
dimensions are larger than the number of classes. That is, the
generated prototypes of different categories are approxima-
tively orthometric in the high-dimensional feature space.



3.4 Pseudo Label Generation for Target Data
Domain alignment can be conducted based on the generated
avatar source prototypes, However, the alignment is non-
trivial due to the lack of target annotations, which makes the
class-wise alignment difficult [Pei et al., 2018; Kang et al.,
2019]. To address this, we generate pseudo labels based on a
self-supervised pseudo-labeling strategy, proposed in [Liang
et al., 2020]. To be specific, let qi=Ge(xi) denote the fea-
ture vector and let ŷki =Cky (q) be the predicted probability of
the classifier regarding the class k. We first attain the initial
centroid for each class k by:

ck =

∑nt

i=1 ŷ
k
i qi∑nt

i=1 ŷ
k
i

, (5)

where nt is the number of target data. These centroids help
to characterize the distribution of different categories [Liang
et al., 2020]. Then, the pseudo label of the i-th target data is
obtained via a nearest centroid approach:

ȳi = arg max
k

φ(qi, ck), (6)

where φ(·, ·) denotes the cosine similarity, and the pseudo
label ȳi∈R1 is a scalar index. During the training process, we
update the centroid of each class by ck=

∑nt
i=1 I(ȳi=k)qi∑nt
i=1 I(ȳi=k)

and
then update pseudo labels based on Eqn. (6) in each epoch,
where I(·) is the indicator function.

3.5 Contrastive Prototype Adaptation
Based on the generated prototypes and target pseudo la-
bels, we conduct prototype adaptation to alleviate domain
shifts. Here, in each training batch, we generate one proto-
type for each class. However, due to domain discrepancies,
the pseudo labels can be quite noisy, making the adaptation
difficult. To address this, we propose a new contrastive proto-
type adaptation strategy, which consists of three key compo-
nents: (1) weighted contrastive alignment; (2) early learning
regularization; (3) target neighborhood clustering.
Weighted Contrastive Alignment. Based on the pseudo-
labeled target data, we then conduct class-wise contrastive
learning to align the target data to the corresponding source
feature prototype. However, the pseudo labels may be noisy,
which degrades contrastive alignment. To address this, we
propose to differentiate pseudo-labeled target data and assign
higher importance to the reliable ones. Motivated by [Chen
et al., 2019] that reliable samples are generally more close to
the class centroid, we compute the confidence weight by:

wi =
exp(φ(qi, cȳi)/τ)∑K
k=1 exp(φ(qi, ck)/τ)

, (7)

where the feature with higher similarity to the correspond-
ing centriod will have higher importance. Then, we can con-
duct weighted contrastive alignment. To this end, inspired
by [Chen et al., 2020], we first use a non-linear projector Cp
to project the target features and source prototypes to a l2-
normalized contrastive feature space. Specifically, the target
contrastive feature is denoted as u=Cp(q), while the proto-
type contrastive feature is denoted as v=Cp(p). Then, for any

target feature ui as an anchor, we conduct prototype adapta-
tion via a weighted contrastive loss:

Lwcon=−wilog
exp(u>i v+/τ)

exp(u>i v+/τ)+
∑K−1
j=1 exp(u>i v−j /τ)

, (8)

where the positive pair v+ is the prototype with the same class
to the anchor ui, while the negative pairs v− are the proto-
types with different classes.
Early Learning Regularization. To further prevent the
model from memorizing noise, we propose to regularize the
learning process via an early learning regularizer. Since
DNNs first memorize the clean samples with correct labels
and then the noisy data with wrong labels [Arpit et al., 2017],
the model in the “early learning” phase can be more pre-
dictable to the noisy data. Therefore, we seek to use the early
predictions of each sample to regularize learning. To this end,
we devise a memory bankH={h1, h2, ..., hnt

} to record non-
parametric predictions of each target sample, and update them
based on new predictions via a momentum strategy. Formally,
for the i-th sample, we predict its non-parametric prediction
regarding the k-th prototype by oi,k=

exp(u>
i vk/τ)∑K

j=1 exp(u>
i vj/τ)

, and

update the momentum by:
hi ←− βhi + (1− β)oi, (9)

where oi=[oi,1, ..., oi,K ], and β denotes the momentum co-
efficient. Based on the memory bank, for the i-th data, we
further train the model via an early learning regularizer Lelr,
proposed in [Liu et al., 2020]:

Lelr = log(1− o>i hi). (10)
This regularizer enforces the current prediction to be close to
the prediction momentum, which helps to prevent overfitting
to label noise. Note that the use of Lelr in this paper is dif-
ferent from [Liu et al., 2020], which focuses on classification
tasks and uses parametric predictions.
Target Neighborhood Clustering. To enhance the con-
trastive alignment, we further resort to feature clustering to
make the target features more compact. Inspired by [Saito et
al., 2020] that the intra-class samples in the same domain are
generally more close, we propose to close the distance be-
tween each target sample and its nearby neighbors. To this
end, we maintain a memory bank Q={q1, q2, ..., qnt

} to re-
store all target features, which are updated when new features
are extracted in each iteration. Based on the bank, for the i-th
sample’s feature qi, we can compute its normalized similar-
ity with any feature qj by si,j=

exp(φ(qi,qj)/τ)∑nt
l=1,l 6=i exp(φ(qi,ql)/τ)

. Moti-

vated by that minimizing the entropy of the normalized simi-
larity helps to learn compact features for similar data [Saito et
al., 2020], we further train the extractor via a neighborhood
clustering loss:

Lnc = −
nt∑

j=1,j 6=i

si,j log(si,j). (11)

Note that the entropy minimization here does not use pseudo
labels, so the learned compact target features are (to some de-
gree) robust to pseudo label noise. We summarize the overall
training scheme of CPGA in Algorithms 1, while the infer-
ence is provided in the supplementary.



Algorithm 1 Training of CPGA

Require: Unlabeled target data Dt={xi}nt
i=1; Source model

{Ge, Cy}; Training epoch E, M ; Parameters η, β, τ , λ.
Initialize: Projector Cp; Generator Gg .
1: for e = 1→ E do
2: Generate prototypes p based on Gg;
3: Compute Lce and Lp

con based on Eqns. (3) and (4);
4: loss.backward() based on Eqn. (1).
5: end for
6: for m = 1→M do
7: Generate prototypes p for each class based on fixed Gg;
8: Extract target data features Ge(x) based on Ge;
9: Obtain target pseudo labels based on Eqn. (6);

10: Obtain contrastive features ht based on Cp;
11: Compute Lw

con, Lelr , Lnc based on Eqns. (8), (10), (11);
12: loss.backward() based on Eqn. (2).
13: end for
14: Output: Ge and Cy .

4 Experiments
Datasets. We conduct the experiments on three benchmark
datasets: (1) Office-31 [Saenko et al., 2010] is a standard do-
main adaptation dataset that is made up of three distinct do-
mains, i.e., Amazon (A), Webcam (W) and DSLR (D). Three
domains share 31 categories and contain 2817, 795 and 498
samples, respectively. (2) VisDA [Peng et al., 2017] is a
large-scale challenging dataset that concentrates on the 12-
class synthesis-to-real object recognition task. The source do-
main contains 152k synthetic images while the target domain
has 55k real object images. (3) Office-Home [Venkateswara
et al., 2017] is a medium-sized dataset, which contains four
distinct domains, i.e., Artistic images (Ar), Clip Art (Cl),
Product images (Pr) and Real-world images (Rw). Each of
the four domains has 65 categories.

Baselines. We compare CPGA with three types of base-
lines: (1) source-only: ResNet [He et al., 2016]; (2) unsu-
pervised domain adaptation with source data: MCD [Saito
et al., 2018], CDAN [Long et al., 2018], TPN [Pan et al.,
2019], SAFN [Xu et al., 2019], SWD [Lee et al., 2019],
MDD [Zhang et al., 2019b], CAN [Kang et al., 2019],
DMRL [Wu et al., 2020], BDG [Yang et al., 2020a], PAL [Hu
et al., 2020], MCC [Jin et al., 2020], SRDC [Tang et
al., 2020]; (3) source-free unsupervised domain adaptation:
SHOT [Liang et al., 2020], PrDA [Kim et al., 2020], MA [Li
et al., 2020] and BAIT [Yang et al., 2020b].

Implementation Details. We implement our method based
on PyTorch1. For a fair comparison, we report the results of
all baselines in the corresponding papers. For the network ar-
chitecture, we adopt a ResNet [He et al., 2016], pre-trained on
ImageNet, as the backbone of all methods. Following [Liang
et al., 2020], we replace the original fully connected (FC)
layer with a task-specific FC layer followed by a weight nor-
malization layer. The projector consists of three FC layers
with hidden feature dimensions of 1024, 512 and 256. We
train the source model via label smoothing technique [Müller
et al., 2019] and train CPGA using SGD optimizer. We set

1The source code is available: github.com/SCUT-AILab/CPGA.

Method Source-free A→D A→W D→W W→D D→A W→A Avg.

ResNet-50 [He et al., 2016] 7 68.9 68.4 96.7 99.3 62.5 60.7 76.1
MCD [Saito et al., 2018] 7 92.2 88.6 98.5 100.0 69.5 69.7 86.5
CDAN [Long et al., 2018] 7 92.9 94.1 98.6 100.0 71.0 69.3 87.7
MDD [Zhang et al., 2019b] 7 90.4 90.4 98.7 99.9 75.0 73.7 88.0
CAN [Kang et al., 2019] 7 95.0 94.5 99.1 99.6 70.3 66.4 90.6
DMRL [Wu et al., 2020] 7 93.4 90.8 99.0 100.0 73.0 71.2 87.9
BDG [Yang et al., 2020a] 7 93.6 93.6 99.0 100.0 73.2 72.0 88.5
MCC [Jin et al., 2020] 7 95.6 95.4 98.6 100.0 72.6 73.9 89.4
SRDC [Tang et al., 2020] 7 95.8 95.7 99.2 100.0 76.7 77.1 90.8

PrDA [Kim et al., 2020] 3 92.2 91.1 98.2 99.5 71.0 71.2 87.2
SHOT [Liang et al., 2020] 3 93.1 90.9 98.8 99.9 74.5 74.8 88.7
BAIT [Yang et al., 2020b] 3 92.0 94.6 98.1 100.0 74.6 75.2 89.1
MA [Li et al., 2020] 3 92.7 93.7 98.5 99.8 75.3 77.8 89.6

CPGA (ours) 3 94.4 94.1 98.4 99.8 76.0 76.6 89.9

Table 1: Accuracy (%) on the small-sized Office-31 (ResNet-50).

the learning rate and epoch to 0.01 and 40 for VisDA and to
0.001 and 400 for Office-31 and Office-Home. For hyper-
parameters, we set η, β, τ and batch size to 0.05, 0.9, 0.07
and 64, respectively. Besides, we set λ=7 for Office-31 and
Office-home while λ=5 for VisDA. Following [Xu et al.,
2020], the dimension of noise z is 100. We put more im-
plementation details in the supplementary.

4.1 Comparison with State-of-the-arts
In this section, we compare our proposed CPGA with the
state-of-the-art methods. For Office-31, as shown in Table 1,
the proposed CPGA achieves the best performance compared
with source-free UDA methods w.r.t. the average accuracy
over 6 transfer tasks. Moreover, our method shows its supe-
riority in the task of A→D and D→A and comparable results
on the other tasks. Note that even compared with the state-of-
the-art methods using source data (e.g., SRDC), our CPGA is
able to obtain a competitive result as well. Besides, from
Table 2, CPGA outperforms all the state-of-the-art methods
w.r.t. the average accuracy (i.e., per-class accuracy) on the
more challenging dataset VisDA. Specifically, CPGA gets the
best accuracy in the eight categories and obtains compara-
ble results in others. Moreover, our CPGA is able to surpass
the baseline methods with source data (e.g., CoSCA), which
demonstrates the superiority of our proposed method. For
Office-Home, we put the results in the supplementary.

4.2 Ablation Study
To evaluate the effectiveness of the proposed two modules
(i.e., prototype generation and prototype adaptation) and the
sensitivity of hyper-parameters, we conduct a series of abla-
tion studies on VisDA.
Effectiveness of Prototype Generation. In this section, we
verify the effect of our generated prototypes in the existing
domain adaptation methods (e.g., DANN [Ganin and Lempit-
sky, 2015], ADDA [Tzeng et al., 2017] and DMAN [Zhang
et al., 2019a]), which, previously, cannot solve the domain
adaptation problem without source data. To this end, we
introduce our prototype generation module to replace their
source data-oriented parts. From Table 3, based on proto-
types, the existing methods achieve competitive performance
compared with the counterparts using source data, or even
perform better in some tasks. It demonstrates the superiority
and applicability of our prototype generation scheme.

github.com/SCUT-AILab/CPGA


Method Source-free plane bicycle bus car horse knife mcycl person plant sktbrd train truck Per-class

ResNet-101 [He et al., 2016] 7 55.1 53.3 61.9 59.1 80.6 17.9 79.7 31.2 81.0 26.5 73.5 8.5 52.4
CDAN [Long et al., 2018] 7 85.2 66.9 83.0 50.8 84.2 74.9 88.1 74.5 83.4 76.0 81.9 38.0 73.9
SAFN [Xu et al., 2019] 7 93.6 61.3 84.1 70.6 94.1 79.0 91.8 79.6 89.9 55.6 89.0 24.4 76.1
SWD [Lee et al., 2019] 7 90.8 82.5 81.7 70.5 91.7 69.5 86.3 77.5 87.4 63.6 85.6 29.2 76.4
TPN [Pan et al., 2019] 7 93.7 85.1 69.2 81.6 93.5 61.9 89.3 81.4 93.5 81.6 84.5 49.9 80.4
PAL [Hu et al., 2020] 7 90.9 50.5 72.3 82.7 88.3 88.3 90.3 79.8 89.7 79.2 88.1 39.4 78.3
MCC [Jin et al., 2020] 7 88.7 80.3 80.5 71.5 90.1 93.2 85.0 71.6 89.4 73.8 85.0 36.9 78.8
CoSCA [Dai et al., 2020] 7 95.7 87.4 85.7 73.5 95.3 72.8 91.5 84.8 94.6 87.9 87.9 36.8 82.9

PrDA [Kim et al., 2020] 3 86.9 81.7 84.6 63.9 93.1 91.4 86.6 71.9 84.5 58.2 74.5 42.7 76.7
SHOT [Liang et al., 2020] 3 92.6 81.1 80.1 58.5 89.7 86.1 81.5 77.8 89.5 84.9 84.3 49.3 79.6
MA [Li et al., 2020] 3 94.8 73.4 68.8 74.8 93.1 95.4 88.6 84.7 89.1 84.7 83.5 48.1 81.6
BAIT [Yang et al., 2020b] 3 93.7 83.2 84.5 65.0 92.9 95.4 88.1 80.8 90.0 89.0 84.0 45.3 82.7

CPGA (ours, 40 epochs) 3 94.8 83.6 79.7 65.1 92.5 94.7 90.1 82.4 88.8 88.0 88.9 60.1 84.1
CPGA (ours, 400 epochs) 3 95.6 89.0 75.4 64.9 91.7 97.5 89.7 83.8 93.9 93.4 87.7 69.0 86.0

Table 2: Classification accuracies (%) on the large-scale VisDA dataset (ResNet-101).

Method A→D A→W D→W W→D D→A W→A Avg.

DANN (with source data) 79.7 82.0 96.9 99.1 68.2 67.4 82.2
DANN (with prototypes) 83.7 81.1 97.5 99.8 63.4 63.6 81.5

DMAN (with source data) 83.3 85.7 97.1 100.0 65.1 64.4 82.6
DMAN (with prototypes) 86.3 84.2 97.7 100.0 64.7 64.5 82.9
ADDA (with source data) 82.9 79.9 97.4 99.4 64.9 63.6 81.4
ADDA (with prototypes) 83.5 81.9 97.2 100.0 63.8 63.0 81.6

Table 3: Comparisons of the existing domain adaptation methods
with source data or prototypes on Office-31 (ResNet-50).

Objective Inter-class distance Intra-class distance Per-class (%)

Lce 0.7860 3.343× e−4 85.0

Lce + Lpcon 1.0034 2.670× e−6 86.0

Table 4: Ablation studies on prototype generation in the stage one
with different losses. Inter-class distance and intra-class distance is
based on cosine distance (range from 0 to 2). We report per-class
accuracy (%) after training the model on VisDA for 400 epochs.

Ablation Studies on Prototype Generation. To study the
impact of our contrastive loss Lpcon, we compare the gener-
ated prototype results from models with and without Lpcon.
From Table 42, compared with training by cross-entropy loss
Lce only, optimizing the generator via Lce+Lpcon makes the
inter-class features separated (i.e., larger inter-class distance)
and intra-class features compact (i.e., smaller intra-class dis-
tance). The Lpcon loss also helps to enhance the performance
from 85.0% to 86.0%.

Ablation Studies on Prototype Adaptation. To investi-
gate the losses of prototype adaptation, we show the quanti-
tative results of the models optimized by different losses. As
shown in Table 5, compared with the conventional contrastive
lossLcon, our proposed contrastive lossLwcon achieves a more
promising result on VisDA. Such a result verifies the ability
of alleviating pseudo label noise of the confidence weight w.
Besides, our model has the ability to further improve the per-
formance when introducing the losses Lelr and Lnc. When
combining all the three losses (i.e., Lwcon, Lelr and Lnc), we
obtain the best performance.

2Figure 2 shows the corresponding visual results of Table 4.

Backbone Lcon Lwcon Lelr Lnc Per-class (%)

3 52.4
3 3 80.9
3 3 82.7
3 3 3 85.4
3 3 3 3 86.0

Table 5: Ablation study for the losses (i.e., Lw
con, Lelr and Lnc)

of prototype adaptation. We show the per-class accuracy (%) of the
model trained on VisDA for 400 epochs. Lcon denotesLw

con without
confidence weight w.

Parameter λ η

1 3 5 7 9 0.001 0.005 0.01 0.05 0.1

Acc. (40 epochs) 83.2 83.9 84.1 83.3 82.2 82.7 83.1 83.3 84.1 81.0
Acc. (400 epochs) 83.3 85.0 86.0 85.5 85.3 85.5 85.6 85.5 86.0 83.0

Table 6: Influence of the trade-off parameter λ and η in terms of
per-class accuracy (%) on VisDA. The value of λ is chosen from
[1, 3, 5, 7, 9] and η is chosen from [0.001, 0.005, 0.01, 0.05, 0.1]. In
each experiment, the rest of hyper-parameters are fixed.

Influence of Hyper-parameters. In this section, we evalu-
ate the sensitivity of two hyper-parameters λ and η on VisDA
via an unsupervised reverse validation strategy [Ganin et al.,
2016] based on the source prototypes. For convenience, we
set η = 0.05 when studying λ, and set λ = 5 when study-
ing η. As shown in Table 6, the proposed method achieves
the best performance when setting λ = 5 and η = 0.05
on VisDA. The results also demonstrate that our method is
non-sensitive for the hyper-parameters. Besides, we put more
analysis of hyper-parameters in the supplementary.

5 Conclusions
This paper has proposed a prototype generation and adapta-
tion (namely CPGA) method for source-free UDA. Specif-
ically, we overcome the lack of source data by generating
avatar feature prototypes for each class via contrastive learn-
ing. Based on the generated prototypes, we develop a robust
contrastive prototype adaptation strategy to pull the pseudo-
labeled target data toward the corresponding source proto-
types. In this way, CPGA adapts the source model to the tar-
get domain without access to any source data. Extensive ex-
periments verify the effectiveness and superiority of CPGA.



Acknowledgments
This work was partially supported by Key Realm R&D
Program of Guangzhou (202007030007), National Natural
Science Foundation of China (NSFC) 62072190, Program
for Guangdong Introducing Innovative and Enterpreneurial
Teams 2017ZT07X183, Fundamental Research Funds for the
Central Universities D2191240, Guangdong Natural Science
Foundation Doctoral Research Project (2018A030310365),
International Cooperation Open Project of State Key Labora-
tory of Subtropical Building Science, South China University
of Technology (2019ZA02).

References
[Arpit et al., 2017] Devansh Arpit, Stanislaw K Jastrzebski,

et al. A closer look at memorization in deep networks. In
ICML, 2017.

[Chen et al., 2019] Chaoqi Chen, W. Xie, et al. Progres-
sive feature alignment for unsupervised domain adapta-
tion. CVPR, 2019.

[Chen et al., 2020] Ting Chen, Simon Kornblith, et al. A
simple framework for contrastive learning of visual rep-
resentations. In ICML, 2020.

[Cui et al., 2020] Shuhao Cui, Shuhui Wang, et al. Towards
discriminability and diversity: Batch nuclear-norm maxi-
mization under label insufficient situations. CVPR, 2020.

[Dai et al., 2020] Shuyang Dai, Yu Cheng, et al. Con-
trastively smoothed class alignment for unsupervised do-
main adaptation. In ACCV, 2020.

[Ganin and Lempitsky, 2015] Yaroslav Ganin and Victor
Lempitsky. Unsupervised domain adaptation by backprop-
agation. In ICML, 2015.

[Ganin et al., 2016] Yaroslav Ganin, Evgeniya Ustinova,
et al. Domain-adversarial training of neural networks.
JMLR, 2016.

[Goodfellow et al., 2014] Ian J. Goodfellow, Jean Pouget-
Abadie, et al. Generative adversarial networks. In
NeruIPS, 2014.

[He et al., 2016] Kaiming He, Xiangyu Zhang, et al. Deep
residual learning for image recognition. CVPR, 2016.

[Hoffman et al., 2018] Judy Hoffman, Eric Tzeng, et al. Cy-
cada: Cycle-consistent adversarial domain adaptation. In
ICML, 2018.

[Hu et al., 2020] Dapeng Hu, Jian Liang, et al. Panda: Pro-
totypical unsupervised domain adaptation. ArXiv, 2020.

[Jin et al., 2020] Ying Jin, Ximei Wang, et al. Minimum
class confusion for versatile domain adaptation. In ECCV,
2020.

[Kang et al., 2019] Guoliang Kang, Lu Jiang, et al. Con-
trastive adaptation network for unsupervised domain adap-
tation. CVPR, 2019.

[Kim et al., 2020] Youngeun Kim, Donghyeon Cho, et al.
Progressive domain adaptation from a source pre-trained
model. ArXiv, 2020.

[Lee et al., 2019] Chen-Yu Lee, Tanmay Batra, Moham-
mad Haris Baig, and Daniel Ulbricht. Sliced wasser-
stein discrepancy for unsupervised domain adaptation. In
CVPR, 2019.

[Li et al., 2020] Rui Li, Qianfen Jiao, et al. Model adap-
tation: Unsupervised domain adaptation without source
data. In CVPR, 2020.

[Liang et al., 2019] Jian Liang, Ran He, et al. Distant su-
pervised centroid shift: A simple and efficient approach to
visual domain adaptation. CVPR, 2019.

[Liang et al., 2020] Jian Liang, Dapeng Hu, et al. Do we
really need to access the source data? source hypothesis
transfer for unsupervised domain adaptation. In ICML,
2020.

[Liu et al., 2020] Sheng Liu, Jonathan Niles-Weed, et al.
Early-learning regularization prevents memorization of
noisy labels. NeruIPS, 2020.

[Long et al., 2018] Mingsheng Long, Zhangjie Cao, et al.
Conditional adversarial domain adaptation. In NeruIPS,
2018.

[Müller et al., 2019] Rafael Müller, Simon Kornblith, et al.
When does label smoothing help? In NeurIPS, 2019.

[Odena et al., 2017] Augustus Odena, Christopher Olah, and
Jonathon Shlens. Conditional image synthesis with auxil-
iary classifier gans. In ICML, 2017.

[Pan et al., 2019] Yingwei Pan, Ting Yao, et al. Trans-
ferrable prototypical networks for unsupervised domain
adaptation. In CVPR, 2019.

[Pei et al., 2018] Zhongyi Pei, Zhangjie Cao, et al. Multi-
adversarial domain adaptation. In AAAI, 2018.

[Peng et al., 2017] Xingchao Peng, Ben Usman, et al. Visda:
The visual domain adaptation challenge. ArXiv, 2017.

[Saenko et al., 2010] Kate Saenko, Brian Kulis, et al. Adapt-
ing visual category models to new domains. In ECCV,
2010.

[Saito et al., 2018] Kuniaki Saito, Kohei Watanabe, et al.
Maximum classifier discrepancy for unsupervised domain
adaptation. In CVPR, 2018.

[Saito et al., 2020] Kuniaki Saito, Donghyun Kim, et al.
Universal domain adaptation through self supervision.
NeruIPS, 2020.

[Sankaranarayanan et al., 2018] Swami Sankaranarayanan,
Yogesh Balaji, et al. Generate to adapt: Aligning domains
using generative adversarial networks. CVPR, 2018.

[Snell et al., 2017] Jake Snell, Kevin Swersky, et al. Proto-
typical networks for few-shot learning. In NeurIPS, 2017.

[Tang et al., 2020] Hui Tang, Ke Chen, and Kui Jia. Un-
supervised domain adaptation via structurally regularized
deep clustering. In CVPR, 2020.

[Tzeng et al., 2014] Eric Tzeng, Judy Hoffman, et al. Deep
domain confusion: Maximizing for domain invariance.
ArXiv, 2014.



[Tzeng et al., 2017] Eric Tzeng, Judy Hoffman, Kate
Saenko, and Trevor Darrell. Adversarial discriminative
domain adaptation. CVPR, 2017.

[van den Oord et al., 2018] Aaron van den Oord, Yazhe Li,
and Oriol Vinyals. Representation learning with con-
trastive predictive coding. ArXiv, 2018.

[Venkateswara et al., 2017] Hemanth Venkateswara, Jose
Eusebio, et al. Deep hashing network for unsupervised
domain adaptation. CVPR, 2017.

[Wei et al., 2016] Pengfei Wei, Yiping Ke, et al. Deep non-
linear feature coding for unsupervised domain adaptation.
In IJCAI, 2016.

[Wu et al., 2020] Yuan Wu, Diana Inkpen, and Ahmed El-
Roby. Dual mixup regularized learning for adversarial do-
main adaptation. In ECCV, 2020.

[Xu et al., 2019] Ruijia Xu, Guanbin Li, et al. Larger norm
more transferable: An adaptive feature norm approach for
unsupervised domain adaptation. In ICCV, 2019.

[Xu et al., 2020] Shoukai Xu, Haokun Li, et al. Generative
low-bitwidth data free quantization. In ECCV, 2020.

[Yan et al., 2017] Yuguang Yan, W. Li, et al. Learning dis-
criminative correlation subspace for heterogeneous do-
main adaptation. In IJCAI, 2017.

[Yang et al., 2020a] Guanglei Yang, Haifeng Xia, et al. Bi-
directional generation for unsupervised domain adapta-
tion. In AAAI, 2020.

[Yang et al., 2020b] Shiqi Yang, Yaxing Wang, et al. Unsu-
pervised domain adaptation without source data by casting
a bait. ArXiv, 2020.

[Zhang et al., 2019a] Yifan Zhang, Hanbo Chen, et al. From
whole slide imaging to microscopy: Deep microscopy
adaptation network for histopathology cancer image clas-
sification. In MICCAI, 2019.

[Zhang et al., 2019b] Yuchen Zhang, Tianle Liu, et al.
Bridging theory and algorithm for domain adaptation. In
ICML, 2019.

[Zhang et al., 2020] Yifan Zhang, Y. Wei, et al. Collab-
orative unsupervised domain adaptation for medical im-
age diagnosis. IEEE Transactions on Image Processing,
29:7834–7844, 2020.

[Zhang et al., 2021] Yifan Zhang, Bryan Hooi, et al. Un-
leashing the power of contrastive self-supervised visual
models via contrast-regularized fine-tuning. ArXiv, 2021.



Appendix
In this appendix, we provide the algorithm of inference
scheme (Section 5), more implementation details (Section 5),
and more experimental results (Section 5).

A. Inference Details of CPGA
In this section, we present the pseudo-code of CPGA during
inference. Specifically, when getting a well-trained CPGA,
we can obtain the target prediction based on the feature ex-
tractor Ge and the classifier Cy . As shown in Algorithm 2,
given an input image x, we first capture the corresponding
feature Ge(x) and then feed the feature into the classifier Cy
to generate the target prediction.

Algorithm 2 Inference of CPGA
Require: Target data x, feature extractor Ge and classifier Cy .
1: Extract feature Ge(x) regrading x using Ge;
2: Compute the prediction Cy(Ge(x)) using Cy;
3: Output: Cy(Ge(x)).

B. More Implementation Details
Generator Architecture. As shown in Table 7, the genera-
tor consists of an embedding layer, two FC layers and two de-
convolution layers. Similar to ACGAN [Odena et al., 2017],
given an input noise z∼U(0, 1) and a label y∈RK , we first
map the label into a vector using the embedding layer. Af-
ter that, we combine the vector with the given noise by a
element-wise multiplication and then feed it into the follow-
ing layers. Since we propose to obtain feature prototypes in-
stead of images, we reshape the output of the generator into a
feature vector with the same dimensions as the last FC layer.
Training. In the stage one, we train the generator by opti-
mizing Lce+Lpcon. The batchsize is set to 128. We use the
SGD optimizer with learning rate = 0.001. In the stage two,
to achieve class-wise domain alignment, we generate feature
prototypes for K classes in each epoch.
Optional Hyper-parameter Selection. Following [Ganin
et al., 2016], we select the hyper-parameters via an unsuper-
vised reverse validation strategy. Such a strategy consists of
two steps: (1) We generate source prototypes for K classes
and predicted labels for the target domain via a well-trained
CPGA. (2) We train another CPGA with pseudo-labeled tar-
get data served as the source domain and evaluate the model
on the source prototypes. By the end, we obtain the cor-
responding hyper-parameters based on the best accuracy on
source prototypes.

C. More Experimental Results
Comparison with State-of-the-art Methods. We verify
the effectiveness of our method on the Office-Home dataset.
From Table 8, the results show that: (1) CPGA outperforms
all the conventional unsupervised domain adaptation meth-
ods, which needs to use the source data. (2) CPGA achieve
the competitive performance compared with the state-of-the-
art source-free UDA methods, i.e., SHOT [Liang et al., 2020]
and BAIT [Yang et al., 2020b]. Besides, we also provide
our reimplemented results of the published source-free UDA
methods on VisDA and Office-31 based on their published
source codes (See Table 9 and Table 11).
Influence of Hyper-parameters. In this section, we pro-
vide more results for the hyper-parameters λ and β on VisDA.
As shown in Table 10, our method achieves the best perfor-
mance with the setting β=0.9 and λ=5 on VisDA.
Visualization of Optimization Curve. Figure 3 shows our
method converges well in terms of the total loss and accuracy
in the training phase. Also, the curve on the validation set
means our method does not suffer from pseudo label noise.
Robustness Comparisons with BAIT. As shown in Fig-
ure 4, BAIT [Yang et al., 2020b] may overfit to mistaken
divisions of certain and uncertain sets, leading to poor gen-
eralization abilities. In contrast, our method is more robust
and can conquer the issue of pseudo label noise.

0 25 50 75 100 125 150 175
Epochs

0.04

0.03

0.02

0.01

0.00

To
ta

l L
os

s

Train
Validation

(a) Total loss curve

0 25 50 75 100 125 150 175
Epochs

0.80
0.82
0.84
0.86
0.88
0.90
0.92
0.94

Ac
cu

ra
cy

Train
Validation

(b) Accuracy curve

Figure 3: Optimization curves of CPGA on Office-31(A→W).

0 3 6 9 12 15
Epochs

0.50
0.55
0.60
0.65
0.70
0.75
0.80

Ac
cu

ra
cy

Ours
BAIT

Figure 4: Testing curves of CPGA and BAIT on VisDA dataset.



Backbone Network

Part Input→ Output Kernel Padding Stride Activation

Embedding (batch size, 1)→ (batch size, 100) - - - -

Linear (batch size, 100)→ (batch size, 1024) - - - ReLU

BatchNorm1d (batch size, 1024)→ (batch size, 1024) - - - -

Linear (batch size, 1024)→ (batch size, d4 ∗ 7 ∗ 7) - - - ReLU

BatchNorm1d (batch size, d4 ∗ 7 ∗ 7)→ (batch size, d4 ∗ 7 ∗ 7) - - - -

Reshape (batch size, d4 ∗ 7 ∗ 7)→ (batch size, d4 , 7, 7) - - - -

ConvTranspose2d (batch size, d4 , 7, 7)→ (batch size, d8 , 6, 6) 2 1 2 -

BatchNorm2d (batch size, d8 , 6, 6)→ (batch size, d8 , 6, 6) - - - ReLU

ConvTranspose2d (batch size, d8 , 6, 6)→ (batch size, d16 , 4, 4) 3 1 2 -

BatchNorm2d (batch size, d16 , 4, 4)→ (batch size, d16 , 4, 4) - - - ReLU

Reshape (batch size, d16 , 4, 4)→ (batch size, d) - - - -

Table 7: Detailed architecture of the generator, where d denote the output dimensions, e.g., 2048.

Method Source-free Ar→Cl Ar→Pr Ar→Rw Cl→Ar Cl→Pr Cl→Rw Pr→Ar Pr→Cl Pr→Rw Rw→Ar Rw→Cl Rw→Pr Avg.

ResNet-50 [He et al., 2016] 7 34.9 50.0 58.0 37.4 41.9 46.2 38.5 31.2 60.4 53.9 41.2 59.9 46.1
MCD [Saito et al., 2018] 7 48.9 68.3 74.6 61.3 67.6 68.8 57.0 47.1 75.1 69.1 52.2 79.6 64.1
CDAN [Long et al., 2018] 7 50.7 70.6 76.0 57.6 70.0 70.0 57.4 50.9 77.3 70.9 56.7 81.6 65.8
MDD [Zhang et al., 2019b] 7 54.9 73.7 77.8 60.0 71.4 71.8 61.2 53.6 78.1 72.5 60.2 82.3 68.1
BNM [Cui et al., 2020] 7 52.3 73.9 80.0 63.3 72.9 74.9 61.7 49.5 79.7 70.5 53.6 82.2 67.9
BDG [Yang et al., 2020a] 7 51.5 73.4 78.7 65.3 71.5 73.7 65.1 49.7 81.1 74.6 55.1 84.8 68.7
SRDC [Tang et al., 2020] 7 52.3 76.3 81.0 69.5 76.2 78.0 68.7 53.8 81.7 76.3 57.1 85.0 71.3

PrDA [Kim et al., 2020] 3 48.4 73.4 76.9 64.3 69.8 71.7 62.7 45.3 76.6 69.8 50.5 79.0 65.7
SHOT [Liang et al., 2020] 3 56.9 78.1 81.0 67.9 78.4 78.1 67.0 54.6 81.8 73.4 58.1 84.5 71.6
SHOT [Liang et al., 2020] 3 57.5 77.9 80.3 66.5 78.3 76.6 65.8 55.7 81.7 74.0 61.2 84.2 71.6
BAIT [Yang et al., 2020b] 3 57.4 77.5 82.4 68.0 77.2 75.1 67.1 55.5 81.9 73.9 59.5 84.2 71.6
BAIT [Yang et al., 2020b] 3 52.2 71.3 72.5 59.9 70.6 69.9 60.3 53.9 78.2 68.4 58.9 80.7 66.4

CPGA (ours) 3 59.3 78.1 79.8 65.4 75.5 76.4 65.7 58.0 81.0 72.0 64.4 83.3 71.6

Table 8: . Classification accuracies (%) on the Office-Home dataset (ResNet-50). We adopt underline to denote reimplemented results.

Method Source-free plane bicycle bus car horse knife mcycl person plant sktbrd train truck Per-class

SHOT [Liang et al., 2020] 3 92.6 81.1 80.1 58.5 89.7 86.1 81.5 77.8 89.5 84.9 84.3 49.3 79.6
SHOT [Liang et al., 2020] 3 88.5 85.9 77.9 49.8 90.2 90.8 82.0 79.0 88.5 84.4 85.6 50.5 79.4
BAIT [Yang et al., 2020b] 3 93.7 83.2 84.5 65.0 92.9 95.4 88.1 80.8 90.0 89.0 84.0 45.3 82.7
BAIT [Yang et al., 2020b] 3 93.8 75.4 86.1 64.0 93.9 96.4 88.5 81.2 88.9 88.7 86.9 39.9 82.0

CPGA (ours, 40 epochs) 3 94.8 83.6 79.7 65.1 92.5 94.7 90.1 82.4 88.8 88.0 88.9 60.1 84.1
CPGA (ours, 400 epochs) 3 95.6 89.0 75.4 64.9 91.7 97.5 89.7 83.8 93.9 93.4 87.7 69.0 86.0

Table 9: Classification accuracies (%) on large-scale VisDA dataset (ResNet-101). We adopt underline to denote reimplemented results.

Method Source-free A→D A→W D→W W→D D→A W→A Avg.

SHOT [Liang et al., 2020] 3 93.1 90.9 98.8 99.9 74.5 74.8 88.7
SHOT [Liang et al., 2020] 3 91.4 90.0 99.1 100.0 74.8 73.6 88.2
BAIT [Yang et al., 2020b] 3 92.0 94.6 98.1 100.0 74.6 75.2 89.1
BAIT [Yang et al., 2020b] 3 91.3 87.4 97.6 99.7 71.4 67.2 85.8

CPGA (ours) 3 94.4 94.1 98.4 99.8 76.0 76.6 89.9

Table 11: Classification accuracies (%) on the Office-31 dataset
(ResNet-50). We adopt underline to denote reimplemented results.

λ β

0.5 0.7 0.9 0.99
3 81.2 83.0 83.9 83.0
5 81.3 82.2 84.1 83.2
7 79.7 81.6 83.3 83.0

Table 10: Influence of the trade-off parameters β and λ in terms
of per-class accuracy (%) on VisDA. The value of β is chosen from
[0.5, 0.7, 0.9, 0.99] and λ is chosen from [3, 5, 7]. In each experi-
ment, the rest of hyper-parameters are fixed to the values mentioned
in the main paper. We report the results of the model trained on
VisDA for 40 epochs.


	1 Introduction
	2 Related Work
	3 Proposed Method
	3.1 Problem Definition
	3.2 Overall Scheme
	3.3 Contrastive Prototype Generation
	3.4 Pseudo Label Generation for Target Data
	3.5 Contrastive Prototype Adaptation

	4 Experiments
	4.1 Comparison with State-of-the-arts
	4.2 Ablation Study

	5 Conclusions

