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ABSTRACT

Mathematical expression recognition (MER) aims to convert an im-

age of mathematical expressions into a Latex sequence. In practice,

the task of MER is challenging, since 1) the images of mathematical

expressions often contain complex structure relationships, e.g., frac-

tions, matrixes and subscripts; 2) the generated Latex sequences can

be very complex and they have to satisfy strict syntax rules. Existing

methods, however, often ignore the complex dependence among

image regions, resulting in poor feature representation. In addition,

they may fail to capture the rigorous relations among different

formula symbols as they consider MER as a common language gen-

eration task. To address these issues, we propose a Structure-Aware

Sequence-Level (SASL) model for MER. First, to better represent

and recognize the visual content of formula images, we propose a

structure-aware module to capture the relationship among different

symbols. Meanwhile, the sequence-level modeling helps the model

to concentrate on the generation of entire sequences. To make the

problem feasible, we cast the generation problem into a Markov de-

cision process (MDP) and seek to learn a Latex sequence generating

policy. Based on MDP, we learn SASL by maximizing the matching

score of each image-sequence pair to obtain the generation policy.

Extensive experiments on the IM2LATEX-100K dataset verify the

effectiveness and superiority of the proposed method.
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A_i^\perp = \left(\delta_{i j}-

\frac{\delta_i\delta_j}{\delta^2}

\right) A_j.

(a) The image of a formula (b) The corresponding Latex sequence

= − .
Figure 1: An illustration of the challenge in MER. As shown

in Figure 1 (a), a formula may contain subscript, superscript

and fraction structures. These structures, located in differ-

ent regions in images,may have strict and complex relations

that are essential formathematical structure understanding

and Latex sequence generation. For example, for 𝐴⊥
𝑖 in Fig-

ure 1(a), rather than simply recognizing characters and out-

putting “Ai\perp", MER needs to consider the complex rela-

tions among “A", “i" and “\perp", and generate the Latex code

“A_𝑖^\perp" as in Figure 1 (b). Unfortunately, how to exploit

these relationships for MER remains a question.
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1 INTRODUCTION

Mathematical expression is a fundamental tool to symbolically ex-

press problems and theories in mathematics, physics and many

other fields [3, 38]. In most scientific and engineering disciplines,

mathematical expressions are the essential part. Since mathematical

expressions contain special/complex symbols, it is often difficult

to input mathematical expressions into computers [23]. To handle

this, mathematical expression recognition (MER), i.e., translating

math formulas from digital documents into markup languages, has

become increasingly important in recent years [11, 20, 37]. Never-

theless, the task of MER is non-trivial due to several challenges.

First, how to represent the formula images is non-trivial, as they

often contain complex structure relationships, such as subscripts,
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superscripts and nested fractions (see Figure 1). These relationships

play an important role in both equation understanding and Latex

sequence generation, but are difficult to be modeled. To this end,

traditional MER systems often contain an interpretation phase,

following the symbol location and symbol recognition phases. The

interpretation phase implies a structure analysis of spatial relations

among symbols using a human-designed parse tree [3]. However,

these methods essentially rely on human-designed rules and may

lead to limited relation modeling abilities in practice.

Recently, Deng et al. [10] has proposed a deep learning-based

MER method that designs a multi-row recurrent neural network

(namely Row-Encoder) to model complex structure relationships.

After that, several studies [6, 40] are devised based on the Row-

Encoder model. However, the Row-Encoder only models the rela-

tionship in the row direction, but ignores that the spatial relation-

ship among symbols usually spans along with different directions.

Second, the evaluation of the generated Latex sequences is im-

portant for the training of MER models, which, however, is very

challenging. Existing deep learning-based MER methods [10, 30]

formulate MER as a common natural language generation task

and use the LSTM with Maximum Likelihood Estimation (MLE).

The maximum likelihood training in common sequence generation

means that the model is guided by a token-level evaluation, i.e.,

maximizing the log-likelihood of each predicted token given the

previously observed target sequences. In other words, the MLE

training forces the model to directly generate the word as same as

the target at the token level without any constraints on the sen-

tence level. However, unlike the natural language which focuses

on creativity and diversity at the token level, the mathematical ex-

pression tends to be rigorous and contextual. Thus, sequence-level

guidance is more practical and even necessary for MER. However,

sequence-level training still remains an open question in MER.

To resolve the above challenges, we propose a structure-aware

model with a sequence-level modeling, namely SASL. Our model

follows a generator-discriminator structure. The generator, includ-

ing an encoder and a decoder, aims to generate Latex sequences.

The encoder consists of a convolutional neural network for fea-

ture extraction and an innovative structure-aware attention-based

module for structure relationship modeling. Meanwhile, we devise

the decoder based on Transformer [31] to decode the extracted fea-

tures into Latex sequences. To train the generator at the sequence

level, inspired by that the sequence generation process is essen-

tially a multi-step decision making process, we propose to model

the image-to-Latex process as a Markov Decision Process and solve

the problem using Reinforcement Learning.

One key question is how to provide reward signals. Recently,

modeling the sequence-level guidance with adversarial training

has been verified to be promising in controlled text generation [16]

and image captioning [9]. Hence, a discriminator can be regarded

as a good evaluator to provide sequence-level feedback for MER

model training. Inspired by this, we train a discriminator to provide

the sequence-level training reward by distinguishing whether the

generated Latex sequence matches the input image well. Moreover,

our discriminator provides stepwise evaluation feedbacks, which

is different from those RL-based image captioning methods [9, 25]

that only provide feedbacks for the whole sequence. In this way,

our method leads to more stable policy learning. Extensive experi-

mental results demonstrate the effectiveness and superiority of our

proposed method.

Our main contributions are summarized as follows:

(1) We innovatively model the Latex sequence generation pro-

cess as a Markov Decision Process (MDP), which has not

been explored by previous MER methods. Based on the MDP,

we solve the problem using reinforcement learning.

(2) We devise a novel discriminator model to provide reward

signals in the MDP. By evaluating how well the generated

sequences match the input image, the discriminator is able

to provide informative reward signals and thus benefits the

learning of the generation model.

(3) We propose a structure-aware feature extraction module

for MER. By resorting to the self-attention scheme, the pro-

posed structure-aware module is able to model the complex

structure relationships among symbols.

2 RELATEDWORKS

Mathematical Expression Recognition Mathematical expres-

sion recognition (MER) is a subfield of optical character recognition

(OCR), which aims to recognize natural language from an image.

Traditional OCR usually contains the following stages: symbol seg-

mentation and symbol recognition. Unlike traditional OCR, mathe-

matical expression recognition requires a further structure analysis,

such as fractions, matrixes, super-scripts, sub-scripts. Early work [5,

7] proposed to process these three stages separately and model the

relationship between symbols via a graph grammar [5, 19]. More-

over, some MER methods [39] used convolutional neural networks

to extract features from images, dropping the explicit structure

analysis.

In recent years, several studies [6] proposed to follow the encoder-

decoder structure with attention and process the above three stages

in an end-to-end manner. To be specific, Zhang et al. [11] proposed

multi-scale attention with a Dense encoder. These models, however,

ignore the structure relationship within image regions. To capture

the relation information, Deng et al. [10] proposed a row encoder,

which runs RNNs over each of the rows of CNN features. However,

the spatial relationship between symbols usually spans different

directions. Therefore, how to model symbol relationships in images

still remains an under-explored problem.

Image Captioning Image captioning translates image to a natural

language sequence, which is similar to MER. Early approaches [12,

28] usually built a model composed of several independent func-

tional building blocks, including a CNN to extract feature, a lan-

guage model to generate a set of candidate captions, and a multi-

modal similarity model to rank those candidate captions. Recent ap-

proaches [21, 22, 34] generally followed an encoder-decoder struc-

ture [13, 14, 36] with an attention mechanism, in which the encoder

extract feature from images and the decoder decodes the extracted

feature into a natural language sequence. The attention mecha-

nism [4] was first proposed for neural language translation and

now is broadly used to model the relations between image regions

and the generated token in image captioning. To learn the caption-

ing model, a common approach is to optimize the cross-entropy
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loss, named Maximum Likelihood Estimation (MLE) [12, 21]. Specif-

ically, MLE maximizes the log-likelihood of each predicted token

given the previously observed target sequences. This type of op-

timization is token-level and forces the model to generate tokens

that exactly match the ground truth. Some studies [8, 25] propose

to adopt some text metrics (e.g., BLEU [24]) to provide a reward

signal and train the model at a sequence-level using Reinforcement

Learning (e.g., policy gradient [41]). Compared with image caption-

ing tasks, the sequence length in Image-to-Latex tasks is always

longer. Directly applying image captioning RL techniques (e.g., [8])

to Image-to-Latex tasks will cause a new delay reward issue, since

these methods provide a reward signal after the whole sequence is

generated. To address this, we propose to provide reward signals

for each generated token rather than the whole sequence.

3 PROBLEM DEFINITION

This paper studies the problem of mathematical expression recog-

nition (MER), which aims to learn a model to translate a formula

image into Latex sequences. Formally, let {𝑋,𝑌1:𝑇 } denote an image-

sequence pair, where 𝑋 denotes a formula image, 𝑌1:𝑇 denotes the

ground-truth Latex sequence, 𝑇 being the length of the sequence1.

Moreover, the sequence 𝑌1:𝑇=(𝑦1, 𝑦2, . . . , 𝑦𝑇 ) contains a series of
tokens 𝑦𝑡 ∈ Y(𝑡 ∈ [𝑇 ]), where Y is the vocabulary of candidate

tokens. For simplicity, we denote a complete sequence 𝑌1:𝑇 by 𝑌 .
Given a formula image 𝑋 , MER tries to generate a Latex sequence

𝑌 to match the ground-truth sequence 𝑌 as well as possible. Here,

one specific image 𝑋 may have several different corresponding 𝑌 .
MER as a Markov Decision Process. To write the Latex se-

quences for mathematical expressions, humans generally concen-

trate on each symbol in the image, and then translate those sym-

bols into Latex tokens sequentially. Such a process is essentially

a multi-step sequential decision making process. Inspired by this,

we formulate the Image-to-Latex generation process as a Markov

Decision Process (MDP). An MDP can be defined as a tupleM =
(S,A,P,R), where S is a finite set of states, A is a finite set

of actions, P : S × A → R is the state transition distribution,

R : S × A → R is the reward function. Moreover, a policy

𝜋 : S → A determines an action given the current state. In the

context of MER, the MDP is slightly different to the standard one.

To be specific, at the generation step 𝑡 , the state is specific to the

pair of the formula image and the historically generated sequence,

denoted by 𝑠𝑡 = (𝑋,𝑌1:𝑡−1) ∈ S. Given such a state 𝑠𝑡 , a generation
policy takes an action 𝑎𝑡 = 𝜋 (𝑠𝑡 ) ∈ A to generate the next token𝑦𝑡 ,
and receive a reward 𝑟𝑡 ∈ R(𝑠𝑡 , 𝑎𝑡 ). Following that, the next state
is reached based on 𝑠𝑡+1 = P(𝑠𝑡 , 𝑎𝑡 ) = (𝑋,𝑌1:𝑡 ), which updates the

historically generated sequence.

In this paper, we aim to learn a generator 𝐺𝜃 (𝑦𝑡 |𝑋,𝑌1:𝑡−1) to
generate Latex sequences from formula images and maximize the

accumulated reward (e.g., the similarity of the generated sequence

and the ground-truth one). Here, 𝜃 denotes the network parameters

of the generator. However, it is not trivial to devise and learn such

a generator due to two key questions: (1) how to extract features

from images with symbol relationships; (2) how to devise an ef-

fective reward signal for training the generator. Existing methods

often extract features using a single convolutional neural network,

1Note that the length of Latex sequences for different formulas can be different.

Algorithm 1 Overall training algorithm

1: Initialize parameters of generator 𝜃 and discriminator 𝜙 .
2: Pretrain generator 𝐺 using Eqn. (1).

3: Pretrain discriminator 𝐷 using Eqn. (12) with samples: (1) im-

ages in dataset with its corresponding sequence generated by

the pre-trained generator; (2) randomly sampled mismatch

pairs in the dataset; (3) real data.

4: for each training iteration do

5: // Update discriminator

6: Sample {𝑋,𝑌 } from real data;

7: Sample Latex sequences 𝑌 ∼ 𝐺𝜃 (𝑌 |𝑋 );

8: Update 𝐷𝜙 using Eqn. (12).

9: // Update generator

10: Sample 𝑋 from real data;

11: Sample Latex sequences 𝑌 ∼ 𝐺𝜃 (𝑌 |𝑋 );

12: Construct dataset {𝑋,𝑌 } and get reward 𝐷𝜙 (𝑋,𝑌 ).
13: Update policy 𝐺𝜃 using Eqn. (9).

14: end for

ignoring the complex symbol relationships within image regions.

In addition, these methods train the generator by minimizing the

negative log-likelihood loss,

min
𝜃

𝑁∑

𝑖=1

− log𝐺𝜃 (𝑌
(𝑖) |𝑋 (𝑖) )

= −

𝑁∑

𝑖=1

log

𝑇∏

𝑡=1

𝐺𝜃 (𝑦𝑡 |𝑋
(𝑖) , 𝑌

(𝑖)
1:𝑡−1) .

(1)

The above loss function provides a feedback signal at the token

level, which focuses on the immediate return and requires the gen-

erated sequence exactly to match the only ground truth sequence.

However, MER is a multi-step decision making process and Latex

sequences tend to be rigorous and contextual. Therefore, this token-

level evaluation limits the generation quality of MER in practice.

To alleviate the above issues, we propose a structure-aware model

with sequence-level modeling for MER.

4 PROPOSED METHOD

In this paper, we model the Image-to-Latex generation process as

a Markov Decision Process (MDP). In an MDP, both the policy

network design and the definition of the reward function are signif-

icant to policy learning. Since the mathematical expression often

contains complex structure relationships, we propose a structure-

aware model, which served as a policy network for handling Latex

sequence generation. The goal of such a policy network is to ex-

tract informative features for mathematical expression recognition

and make a multi-step decision based on these extracted features.

To learn a well-performed policy, a suitable reward function is of

great importance. Since MER focuses on generating a sequence

that matches the strict syntax rules, we aim to evaluate the gen-

erated sequences at a sequence-level. Considering that modeling

the sequence-level guidance with adversarial training is proven to

be promising in controlled text generation, we propose to train a

discriminator to provide the feedback signal. The overall algorithm

is shown in Algorithm 1.
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Figure 2: An overview of the proposedmethod.We formulate sequence generation process as aMarkovDecision Process (MDP)

and then train the generator𝐺 (agent) using reinforcement learning. The reward signals are provided by an additional trained

discriminator. The structures of the encoder and decoder in the discriminator are the same as the one in the generator.

4.1 General Architecture

As shown in Figure 2 (a), our proposed method consists of a gener-

ator for Latex generation and a discriminator for providing reward

training signals.

Generator: As shown in Figure 2 (c), the generator follows the

encoder-decoder structure [31]. The encoder extracts a visual fea-

ture from images, and then the decoder decodes the extracted fea-

ture into Latex sequences. Since the spatial relationship among

symbols is significant for MER, it is important to capture such in-

formation in visual feature extraction. To this end, we propose a

structure-aware module in the encoder for better structure rela-

tionship modeling (See the next subsection). Moreover, the de-

coder in our method is identical to the decoder in Transfomer [31].

At each time step, the decoder generates a Latex token based on

the input image and the previously generated tokens.

Discriminator: To provide a sequence-level training guid-

ance, we devise a discriminator to evaluate the image-sequence

pairs. As shown in Figure 2 (b), the discriminator gets the image-

sequence pair as the input, and outputs a reward score regarding

how well the generated sequence matches the ground-truth one.

Please see the next sections for more details.

4.2 Structure Relationship Modeling

In MER, analyzing the structure relationship among image regions

is necessary for further Latex sequences generation. Therefore, we

involve the encoder with a stucture-aware module to capture the

structure relationship. The most commonly used model to extract

features from the image is convolutional neural network. The con-

volution operator only aggregates information in a local neighbor-

hood, leading to inefficiently modeling long-range dependencies.

However, long-range dependency is important for an Image-to-

Latex system. For example, the left bracket may be far away from

the right bracket. To model relationship between symbols, we com-

pute the similarity of the feature vector, which is obtained by the

dot product of feature vectors. Similarity of features are commonly

used metric to evaluate the relationship, and dot product is widely

used to represent the similarity [17, 18]. In this section, we intro-

duce a self-attention mechanism to the image feature extractor. The

relationship between spatial regions is represented by the similarity

of features enabling our network to efficiently model relationships

between spatial regions.

The image features are first extracted from some feature extrac-

tors such as convolutional neural networks. Then the extracted
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features x are transformed into two feature spaces using some

function 𝑓 (·) and 𝑔(·), i.e., convolution operation or linear trans-

formation. The similarity between location 𝑖 and location 𝑗 in the

images feature map x is defined as

𝛼𝑖, 𝑗 =
exp(𝑠𝑖 𝑗 )∑𝑁
𝑗=1 exp(𝑠𝑖 𝑗 )

, where 𝑠𝑖 𝑗 = 𝑓 (x𝑖 )
𝑇𝑔(x𝑗 ). (2)

The attention weights indicate the extent to which the model at-

tends to location 𝑗 when extracting features for location 𝑖 . The
resulting feature is O = (o1, o2, . . . , o𝐻×𝑊 ), where,

o𝑖 =
𝐻×𝑊∑

𝑗=1

𝛼𝑖, 𝑗ℎ(x𝑗 ). (3)

Here,ℎ(·) is some function to transform the original features into an-

other feature space. In our experiments, the feature transformation

function 𝑓 (·), 𝑔(·), ℎ(·) are all implemented by 1 × 1 convolutions.

We further multiply the resulting feature map by a scale parameter

and add back the original feature map, combining both local and

non-local regions. Therefore, the final output is given by,

x̃𝑖 = 𝛾o𝑖 + x𝑖 , (4)

where 𝛾 is a learnable scalar and it is initialized as 0. The learnable

parameter 𝛾 allows the model to adaptively assign weight to non-

local regions.

4.3 Sequence-level Training Guidance

To learn a well-performed MER model, the design of training feed-

back signals is quite important. Existing MER approaches train the

generation model using maximum likelihood estimation, which

forces on immediate return and requires the generated sequence

completely match the only ground truth sequence. However, MER

is a multi-step decision making process and Latex sequences tend

to be rigorous and contextual, and thus there is a strong motivation

to design a sequence-level training guidance.

To achieve sequence-level training, we propose to learn a Latex

sequence generating policy with reinforcement learning based on

our predefined MDP. Given some evaluation metric 𝑅(𝑋,𝑌 ) for
evaluating an image-sequence pair (𝑋,𝑌 ), we aim to optimize

max
𝜃

𝐽 (𝜃 ) = E𝐺𝜃 (𝑌 |𝑋 ) [𝑅(𝑋,𝑌 )] . (5)

To learn the policy 𝐺𝜃 for generating Latex sequences, the neces-

sary component is the definition of the reward signal 𝑅(𝑋,𝑌 ). In
image captioning and NLP, some text evaluation scores (SPICE [2],

CIDEr [32] and etc.) are used for model evaluation. However, a

mathematical expression can have several corresponding Latex se-

quences, using those text evaluation scores as a reward can lead to

an incorrect evaluation.

To alleviate the above issue, we learn a discriminator 𝐷𝜙 to eval-

uate the image-sequence pairs. 𝐷𝜙 (𝑋,𝑌 ) is a probability indicating

how likely a sequence is from real sequence data or not. Given an

input image𝑋 , the discriminator learns to maximize score𝐷𝜙 (𝑋,𝑌 )

for the real data pair (𝑋,𝑌 ) and minimize score 𝐷𝜙 (𝑋,𝑌 ) for the

fake data pair (𝑋,𝑌 ). The generator learns to produce response𝑌 to

fool the discriminator, i.e., maximizing 𝐷𝜙 (𝑋,𝑌 ). The optimization

problem is

max
𝜙

𝐿𝜙 = E(𝑋,𝑌 )∼𝑃𝑅 (𝑋,𝑌 ) [log𝐷𝜙 (𝑋,𝑌 )]

+ E𝑋∼𝑃𝑅 (𝑋 ),𝑌∼𝐺𝜃 (𝑌 |𝑋 )
[log(1 − 𝐷𝜙 (𝑋,𝑌 ))],

(6)

where 𝑃𝑅 (𝑋 ) and 𝑃𝑅 (𝑋,𝑌 ) are the probability distribution of 𝑋
and joint probability distribution of (𝑋,𝑌 ) from the training data.

We replace the evaluation metric 𝑅(𝑋,𝑌 ) with the predicted score

of discriminator. Since the discriminator evaluates the entire se-

quences, the rewards except for the last time step are set to zero,

which causes the problem of delay reward. To stabilize the policy

learning, we aim to make an evaluation at each time step.

We denote 𝑄 ({𝑋,𝑌1:𝑡−1}, 𝑦𝑡 ) as the value of taking action 𝑦𝑡 in
state {𝑋,𝑌1:𝑡−1} under the policy 𝐺𝜃 , which is the expected return

starting from state {𝑋,𝑌1:𝑡−1}. Then the state-action value is the

expected return of those sequences sharing the same prefix 𝑌1:𝑡 ,

𝑄 ({𝑋,𝑌1:𝑡−1}, 𝑦𝑡 ) = E𝑍∼𝐺𝜃 ( · |𝑋,𝑌1:𝑡 ) [𝐷 (𝑋, {𝑌1:𝑡 , 𝑍 })], (7)

where 𝑍 is a sequence of words generated by the current generator

given input 𝑋 and generated prefix 𝑌1:𝑡 . Then the optimization

problem (5) can be modified as following,

max
𝜃

𝐽 (𝜃 ) = E𝑋,𝑦𝑡∼𝐺𝜃 ( · |𝑋,𝑌1:𝑡−1) [𝑄 ({𝑋,𝑌1:𝑡−1}, 𝑦𝑡 )] . (8)

The gradient of Eqn. (8) w.r.t.𝜃 is

∇𝜃 𝐽 (𝜃 ) =
𝑁∑

𝑖=1

𝑇∑

𝑡=1

𝑄 ({𝑋 (𝑖) , 𝑌
(𝑖)
1:𝑡−1}, 𝑦

(𝑖)
𝑡 )

∗ ∇𝜃 log𝐺𝜃 (𝑦
(𝑖)
𝑡 |𝑋 (𝑖) , 𝑌

(𝑖)
1:𝑡−1). (9)

According to Eqn. (7),

E𝑌∼𝐺𝜃 (𝑌 |𝑋 ) [

𝑇∑

𝑡=1

𝑄 ({𝑋,𝑌1:𝑡−1}, 𝑦𝑡 )]

=E𝑌∼𝐺𝜃 (𝑌 |𝑋 ) [

𝑇∑

𝑡=1

E𝑍∼𝐺𝜃 ( · |𝑋,𝑌1:𝑡 ) [𝐷 (𝑋, {𝑌1:𝑡 , 𝑍 })]]

=
𝑇∑

𝑡=1

E𝑌∼𝐺𝜃 (𝑌 |𝑋 )E𝑍∼𝐺𝜃 ( · |𝑋,𝑌1:𝑡 ) [𝐷 (𝑋, {𝑌1:𝑡 , 𝑍 })]

=
𝑇∑

𝑡=1

E𝑌∼𝐺𝜃 (𝑌 |𝑋 )𝐷 (𝑋,𝑌 ) = E𝑌∼𝐺𝜃 (𝑌 |𝑋 ) [𝑇 · 𝐷 (𝑋,𝑌 )] .

(10)

With one-sample estimation of Eqn. (10), we have

𝐷 (𝑋,𝑌 ) =
1

𝑇

𝑇∑

𝑡=1

𝑄 ({𝑋,𝑌1:𝑡−1}, 𝑦𝑡 ) . (11)

In this paper, the discriminator is an image-to-sequence model that

takes images as the encoder input and Latex sequences as the de-

coder input, while the output is a sequence of expected future return

for each token. The average value of this sequence is the classifica-

tion of the discriminator. Typically, we train the discriminator using

three kinds of image-formula pairs: ground truth sequences with

matched images (𝑋,𝑌 ), generated sequences with matched images

(𝑋,𝑌 ), and ground truth sequences with mismatched ground truth
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images (𝑋,𝑌 ). Last, the objective for learning the discriminator can

be formulated as follows:

𝐿𝜙 = E(𝑋,𝑌 ) [log𝐷 (𝑋,𝑌 )] +𝜆E(𝑋,𝑌 )

[
log(1−𝐷 (𝑋,𝑌 ))

]

+(1−𝜆)E
(𝑋,𝑌 )

[
log(1−𝐷 (𝑋,𝑌 ))

]
,

(12)

where 𝜆 is a trade-off parameter.

5 EXPERIMENTS

Following [6], we evaluate the proposed method on the IM2LATEX-

100K dataset [10] which contains 103,556 formula images of mathe-

matical expressions with their ground-truth Latex sequences.

Dataset and preprocessing. IM2LATEX-100K dataset is ex-

tracted from the 2003 KDD cup [15] by parsing Latex sources of

papers. The dataset has been split into training (83,883 formulas),

validation (9,319 formulas), and test (10,354) sets [10]. The lengths of

Latex formulas in IM2LATEX-100K range from 38 to 997 characters,

with a mean of 118 and a median of 98.

We build a token vocabulary using formulas in the training set

and treat Latex words as tokens (e.g., “\pi" and “\begin{array}")

rather than single characters. Those tokens appear less than 10

times are replaced with “UNK" token. Two special tokens, i.e.,

“START" and “END", are added to the vocabulary to represent the

start and the end of the Latex sequences. Our resulting vocabulary

size is 499. Following [10], images of large sizes, Latex formulas

with more than 150 tokens, or those that cannot be parsed are

ignored during training and validation, but included during testing.

BaselineMethods.We compare our method with existing MER

systems, including (1) commercial expression recognition sys-

tem: INFTY reader [29] is a commercial mathematical expression

recognition system, containing symbol recognition and structural

analysis; (2) classical OCR method: CRNN [26] is a CTC-based

method, using CTC to address the left-to-right ordering assump-

tion; (3) attention-based methods: Caption [35], Densenet [33],

WYGIWYS [10] and FGFE [6]. These deep learning methods use an

attention mechanism to replace the inefficient CTC.

EvaluationMetric. Following [6], we evaluate ourmethodwith

two kinds of evaluation metrics, i.e., text-based and image-based

metrics. The text-based metric includes BLEU and Token Edit Dis-

tance (EDT), which measures the distances between the generated

sequences and the ground truth sequences. The image-based metric

serves to evaluate the distances between the parsed images of the

generated sequences and the ground truth sequences, including the

Image Exact Match Accuracy (EMI) and Image Edit Distance (EDI).

Implementation Details.We implement the proposed method

based on Tensorflow [1]. For a fair comparison, we use the same

image feature extractor as [6], and we ignore those images with a

size larger than (160, 500) and those Latex formulas with more than

150 tokens during training and validation. For the structure-aware

module, the function 𝑓 (·), 𝑔(·) and ℎ(·) are one convolution layer

with kernel size 1, and their output channels are 16, 16 and 64. The

decoder is a transformer in a small configuration [31] with 6 self-

attention layers. We pre-train our model for 20 epochs with Adam

optimizer using a softmax cross-entropy loss. Batch size, initial

learning rate and decay rate are set to 20, 1e-3 and 0.1, respectively.

For warming up, we adopt a learning rate of 1e-4 for the first two

epochs. For the sequence-level modeling, we train the model for

Method BLEU EDT EDI EM EM(w/o space)

CRNN [26] 30.36 - - 7.60 9.16

INFTY [29] 66.65 - - 15.60 26.66

Caption [35] 75.01 - - 53.53 55.72

Densenet [33] 79.21 81.41 76.15 54.54 58.41

WYGIWYS [10] 87.73 87.60 87.90 77.46 79.88

FGFE [6] 87.21 85.96 87.90 77.64 81.71

SASL (ours) 88.77 88.66 89.16 79.37 82.59

Table 1: Comparisons with the state-of-the-arts on

IM2LATEX-100.

Method EM EM(w/o space)

Densenet [33] 54.90 58.79

WYGIWYS [10] 80.00 82.00

FGFE [6] 80.13 84.30

MER (ours) 81.39 84.47

SAMER (ours) 81.58 85.04

SASL (ours) 82.23 85.54

Table 2: Comparisons on IM2LATEX-100 (formula length ≤

150).

5 epochs with a learning rate of 5e-5. At test time, we employ the

beam search with beam size 5.

In MER, the spatial relationship among symbols spans in dif-

ferent directions. To model the spatial relationship, we extend the

1D positional encoding in [31] to two-dimension via concatenat-

ing the two positional encodings along the channel dimension.

The positional embedding is added to the feature map before the

decoder. In our experiment, “MER” denotes the basic model that

consists of a convolutional neural network and a Transformer de-

coder. “SAMER” is the basic model equipped with our proposed

structure-aware module. “SASL” is our proposed structure-aware

model with sequence-level modeling.

5.1 Comparison with State-of-the-art Methods

We compare ourmethodwith state-of-the-arts and report the results

in Table 1. From the results, we can draw the following observa-

tions: (1) CRNN, a CTC-based model, has the worst performance

on both image-based and text-based evaluation metrics. (2) The

INFTY achieves a high text-based accuracy but performs poorly on

image-based accuracy. (3) All attention-based methods outperform

CRNN by a large margin. Overall, compared with existing meth-

ods, our method achieves the highest performance on image-based

evaluation metric, indicating that our method is able to generate

exactly correct Latex sequences. Since our model is trained on those

formulas with length less than 150, we further report the results

on these data. As shown in Table 2, our model shows superiority

over existing methods. We show some prediction results of our

model in Figure 3. In Fig. 3, the left column shows the input images,

the resulting Latex sequences are shown in the right column. Our

model can properly recognize the complex structures, e.g., fraction,

matrix, in mathematical expressions. Furthermore, although our

proposed method did not have any constraints on generating valid

syntax, our model achieves 99.1% valid syntax on test set.

Intense reward fluctuation of discriminator. The fluctua-

tion commonly appears in adversarial learning. To stabilize the
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IInput Image Predicted Sequence

2 , = 0, = 0. i \sqrt { 2 } \partial _ { - } \chi - g [ \phi , \psi ] = 0 , \quad \partial _ { - } ^ { 2 } \bar { A } _ { + } - g ^ { 2 } J ^ 
{ + } = 0 .

= , = . R ( e _ { 1 } ) = \epsilon ^ { - J _ { 6 7 } + J _ { 8 9 } } , \quad R ( e _ { 2 } ) = \epsilon ^ { J _ { 4 5 } - J _ { 8 9 } } .

= 0
0 and = 0

0 . \rho ^ { 0 } = \left( \begin{array} { c c } { 0 } & { - i } \\ { i } & { 0 } \\ \end{array} \right) \; \; \mathrm { a 
n d } \; \; \rho ^ { 1 } = \left( \begin{array} { c c } { 0 } & { i } \\ { i } & { 0 } \\ \end{array} \right) .

= + + . Q = c \sum _ { i } f _ { i } ^ { \prime } p ^ { i } + \sum _ { k } c _ { k } p ^ { k } f _ { k } + i n f i n i t e \; m o r e .

+

( ) +
.

S \rightarrow S + \frac { i [ ( \hat { U } ^ { T } ) ^ { - 1 } ] _ { 1 } ^ { \ \Sigma } ( H _ { \Sigma } ^ { ( 1 ) } + C _ 
{ \Sigma \Delta } \hat { X } ^ { \Delta } ) } { \hat { U } _ { \Lambda } ^ { 0 } \hat { X } ^ { \Lambda } } .

= = , , , L _ { g } ^ { ' } \Bigl ( v ( h ) \Bigr ) = v ( L _ { g } h ) = v ( g h ) \, ,  \forall g , h \in G ,

= 2 +
1
2

+ +
( + 1)

,
E _ { 1 2 } ~ ~ \Phi = 2 \sqrt { ( m + \frac { 1 } { 2 } b r ) ^ { 2 } + p _ { r } ^ { 2 } + \frac { \ell ( \ell + 1 ) } { r 
^ { 2 } } } ~ ~ \Phi ,

Figure 3: Examples of Prediction Results.

(a) (b)

Figure 4: (a) Learning curve of discriminator. (b) Qualitative

examples of the attention mechanism.

training process, we pretrain the discriminator. We also feed ground

truth sequence to the generator, and set reward to 1 for model up-

date. With this strategy, even if the generator gets lost, it knows

what sequences are good and how to push itself to generate these

good sequences. Besides, we show the training loss of discriminator

in Figure 4(a). As shown in the Figure, the discriminator finally

converges. Note that the feature extractor of discriminator was

initialized with the weights of the pretrained generator, thus the

loss of discriminator decreases rapidly at the beginning.

Attention Visualization. Our method uses the attention mech-

anism to sequentially focus on informative characters on the images,

which implicitly assumes a left-to-right order. To better understand

the generation process, we visualize the encoder-decoder attention

maps to show the translation process of our model in Figure 4(b).

An image region with a higher attention weight is masked with

red square, which indicates where the model concentrates on. Each

line in Fig.4 is related to a character, e.g., the first line is “\alpha”

and the second line is “1”. As shown in Figure 4(b), our model can

sequentially attend the characters in left-to-right order.

5.2 Ablation Studies

To verify the effectiveness of each component in our method, we

conduct ablation studies by removing different components from

Method BLEU EDT EDI EM EM(w/o space)

MER w/o pos 83.92 86.91 89.37 75.10 78.52

MER 87.99 88.81 89.81 78.87 81.86

SAMER 88.06 89.13 88.92 79.07 82.45

SASL 88.77 88.66 89.16 79.37 82.59

Table 3: Ablation studies on different components.

𝜆 BLEU EDT EDI EM EM(w/o space)

0.1 88.26 89.80 91.40 78.05 81.36

0.3 88.77 88.66 89.16 79.37 82.59

0.5 88.01 89.96 88.37 78.08 81.25

Table 4: Performance comparisons with different 𝜆.

our model. We show experimental results in Table 3. The simplest

model, denoted as “MER w/o pos”, is the combination of a basic

convolutional neural network and a Transformer decoder, which

achieves 75.10% on Image Exact Match (EM). Adding the positional

encoding to the image feature improves the performance of the

EM to 78.87%, indicating that the positional information provides

useful position cues to facilitate sequence decoding. Furthermore,

with the help of the structure relationship modeling module, our

method achieves 79.07% in EM. With the sequence-level modeling,

the EM score of our method is further raised to 79.37%.

5.3 Parameter Sensitivity Analysis

In this section, we investigate how the proposed method performs

with the changes of the hyper-parameter. We set the ratio of dif-

ferent types of mismatch pairs 𝜆 = {0.1, 0.3, 0.5}. The experimental

result is shown in Table 4. Since we focus on the image-based

evaluation metric, we choose 𝜆 = 0.3 in our experiments.

Session 36: Vision and Language-II MM ’21, October 20–24, 2021, Virtual Event, China

5044



SSequence length
[0,30) [30,60) [60,90) [90,120) [120,150)

I
m
a
g
e
 
e
x
a
c
t
 
m
a
t
c
h

0

0.2

0.4

0.6

0.8

1

Densenet
WYGIWYS
FGFE
ASL

Figure 5: The impact of formula length on image exact

match.
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Figure 6: Samples of long length formulas generation results.

“GT" denotes ground truth and “PD" denotes prediction by

our model.

5.4 Failure Case Analysis

In this section, we analyze some failure cases of our model. We find

that our model fails on those formulas with long-length and images

with multi-line expressions.

Long Length Expression Recognition. To show our model’s

ability to generate Latex sequences with different lengths, we group

the test set according to their sequence length and evaluate the

image exact match score. To be consistent with the training data,

we only show the results on those formulas with length less than

150. As shown in Figure 5, all models experience a performance

drop on longer expressions. We show some examples in Figure 6.

Although our model failed to make a correct prediction at the end

of the formula, it correctly recognized the fraction, super-script

and sub-script. To address this issue, one possible solution is to clip

the formula image into some images with short width, and then

generate Latex sequences respectively.

Multi-line Expression Recognition. Our model is trained

on those images with a height less than 160 and a width less

than 500. However, the test set includes many large images with

160 ≤ height, width ≤ 800, which often contain multiple lines of

expressions. We find it is hard for our model to recognize these

multi-line expressions. For example, our method fails to recognize

the multi-line structure in Figure 7 (b). Formulas in the training set

contain at most two lines, which may be the reason that the model

tends to capture the first two lines for Fig.7. To tackle this problem,

we propose to decompose the multi-line expression recognition

into multiple single-line expression recognition tasks. Specifically,

we first horizontally project the image [27]. Then, we find the upper

and lower limits of each line, and perform line cutting. Last, we

perform expression recognition for each clipped formula image.

F0A + λ0FA3 = 0, F15 + λ0λ1F24 = 0

λ0F12 + λ1F45 + λ2F67 = 0,
F15 + λ0λ1F24 = 0,

F69 + λ1F78 = 0.

F47 + λ1λ2F56 = 0,
F19 + λ0λ1λ2F28 = 0,
F17 + λ0λ2F26 = 0,

F49 + λ2F58 = 0,

F0A + λ0FA3 = 0,

F18 + λ0λ1λ2F92 = 0,

F48 + λ2F95 = 0,

F16 + λ0λ2F72 = 0,
F14 + λ0λ1F52 = 0,

F46 + λ1λ2F75 = 0,

F68 + λ1F97 = 0,

F0A + λ0FA3 = 0,

F18 + λ0λ1λ2F92 = 0,

F48 + λ2F95 = 0,

F16 + λ0λ2F72 = 0,
F14 + λ0λ1F52 = 0,

F46 + λ1λ2F75 = 0,

F68 + λ1F97 = 0,

λ0F12 + λ1F45 + λ2F67 = 0,
F15 + λ0λ1F24 = 0,

F69 + λ1F78 = 0.

F47 + λ1λ2F56 = 0,
F19 + λ0λ1λ2F28 = 0,

F17 + λ0λ2F26 = 0,

F49 + λ2F58 = 0,

Figure 7: An example of multi-line expression recognition.

As shown in Figure 7 (c), our method obtains a large performance

improvement, although the typesetting of output expressions may

not align with the ground truth.

Although our model performs poorly on multi-line expressions,

our proposed method improves the EM score from 80.92% to 81.98%

on those multi-line expressions.

6 CONCLUSION

In this paper, we have proposed a structure-aware mathematical ex-

pression recognition method with sequence-level modeling (SASL).

Our method contains a structure-aware module to deal with the

complex structural analysis. The structure-aware module serves

to model the relationship among image regions by measuring the

similarity between different image regions. Our model is trained

at a sequence-level. Specially, we model the Latex sequences gen-

eration process as a Markov Decision Process and solve it using

reinforcement learning. The reward signal is provided by a trained

discriminator, which evaluates how well the generated sequences

match the input image. Specifically, we propose a stepwise eval-

uation for Latex sequences to stabilize policy learning. Extensive

experimental results on the IM2LATEX-100K dataset demonstrate

that our method outperforms the state-of-the-arts. Note that our

method is also able to be transfered to handwritten MER (HMER),

since the only difference between printed MER and HMER is the

image feature extraction, which is left as our future work.
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