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Abstract—In this paper, we study relations ranking and
object classification for multi-relational data where objects
are interconnected by multiple relations. The relations among
objects should be exploited for achieving a good classification.
While most existing approaches exploit either by directly
counting the number of connections among objects or by
learning the weight of each relation from labeled data only.
In this paper, we propose an algorithm, TensorRRCC, which
is able to determine the ranking of relations and the labels of
objects simultaneously. Our basic idea is that highly ranked
relations within a class should play more important roles
in object classification, and class membership information is
important for determining a ranking quality over the relations
w.r.t. a specific learning task. TensorRRCC implements the idea
by modeling a Markov chain on transition probability graphs
from connection and feature information with both labeled
and unlabeled objects and propagates the ranking scores of
relations and relevant classes of objects. An iterative progress
is proposed to solve a set of tensor equations to obtain the
stationary distribution of relations and objects. We compared
our algorithm with current collective classification algorithms
on two real-world data sets and the experimental results show
the superiority of our method.

Keywords-relations ranking, classification, tensor, multi-
relational data

I. INTRODUCTION

Collective classification aims to exploit linkage informa-

tion among objects whose class labels are correlated for

improving classification accuracy. It is an important and

intense research problem in last decade which can assist

in many applications of data mining, e.g., recommending

specific items for individuals, discovering communities in

social networks, and detecting fraud in communication

networks. A variety of collective classification approaches

have been explored in the literature [1], [2], but most of

them focus on single-relational data. However, in many real-

world applications, objects are involved in multiple types

of relations which are complex, various, and discriminative.

The relations between one pair of objects commonly indicate

different semantic representation. To be more specific, we

show in Figure 1(a) an example of a bibliographic network

over research papers. This example contains three relations,

such as “Citation”, “Co-author”, and “Related Topics”.

∗The first two authors contributed to this work equally. Correspondence
should be addressed to M. Tan and J. Chen.

Recently, some researchers (see [3], [4]) have considered

the multi-relational collective classification. Kong et al.

[3] captures the subtlety of different types of relations by

counting the number of connections for each kind of relation

respectively. This method is straightforward and easy to

implement, but the link counting may not provide additional

discriminative power to enhance the classification. Other

studies [4], [5] try to weight the importance of relations by

training the weight parameters from labeled data. Relation

knowledge obtained in this way is generally helpful but

with high risks of overfitting. In this paper, we proposed

(a) (b)

Figure 1. An example of bibliographic network. (a) Examples of multiple
types of connections; (b) A tensor representation of the data.

a tensor-based relations ranking and collective classification

algorithm, TensorRRCC, to determine the importance of

relations and predict class labels for objects simultaneously.

Our intuition is that highly ranked relations within a class

should play more important roles in object classification,

and class membership information is also important for

determining a ranking quality over the relations. Specifically,

we use tensor to represent the multiple relations among

objects. As shown in Figure 1(b), a three-dimensional tensor

is used to represent the relational data in Figure 1(a). Note

that, each two-dimensional slice of the tensor represents an

adjacency matrix for one relation. After that, we model the

problem as a Markov chain on a set of transition probability

graphs from both connection and feature information of both

labeled and unlabeled data and propagate the ranking scores

of relations and relevant classes of objects on these graphs.
The main contributions of this paper are as follows.

• We propose an algorithm, TensorRRCC, that integrates

relation ranking and object classification, allowing them
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to mutually enhance each other.

• We develop solve a set of tensor equations in Markov

chain model to obtain a stationary distribution as eval-

uation scores for classification and ranking.

• By building a tensor-based Markov chain model, our

algorithm can effectively make use of both labeled and

unlabeled data information to boost the classification

and ranking performance.

The rest of the paper is organized as follows. The related

work is introduced in Section 2. The proposed methodol-

ogy is detailed in Section 3. The experimental results are

presented in Section 4. Conclusions are given in Section 5.

II. RELATED WORK

Collective Classification. Various collective classification

approaches have been developed to perform learning on

relational data [1], [6]. ICA [1] is one of the most well-

known algorithms which transforms the relational informa-

tion into a feature vector by counting the labels of connected

nodes. Macskassy [7] developed a classifier, wvRN+RL,

to estimate the distribution probability of labels for each

node through iteratively computing neighboring labels. A

few researchers have recently examined the semi-supervised

collective classification task focusing on the less labeled

data. In [2], the authors examine the performance of many

semi-supervised variants, including ICA.

Heterogeneous Network Learning. Ji et al. [8] proposed

a RankClass algorithm to use the ranking of heterogeneous

objects to perform the various objects classification. Eswaran

et al. [9] proposed ZooBP to perform on heterogeneous

graphs. These works consider multiple types of nodes and

relations while we focus on only one type of node. Kong

et al. [3] proposed an approach for solving such problem,

which employs the meta-path method to transform a hetero-

geneous network to multiple relations which are considered

as a sequence of feature vectors by aggregating the label

information of neighbors via each relation. This method is

used as a comparison in the experiment.

Tensor-based Multi-relational Learning. There has been

a growing interest in tensor methods for multi-relational

learning, partially due to their natural representation of

multi-relational data. These approaches have been applied

successfully in many applications, such as community dis-

covery [10], link prediction [11], and ranking [12]. More

recently, Ng et al. [13] proposed a framework, MultiRank,

to seek the stationary probability distributions of a set of

tensors for a ranking problem in multi-relational data. Later

on, this approach is employed for computing the hub, author-

ity scores of objects, and the relevance scores of relations

[14], image retrieval [15] and discovering the community

structure [16]. Different from these approaches, we focus

on the problem of object classification and relations ranking

in which the objects attribute and the labels information of

each entity are taken into account.

III. METHODOLOGY

We use a graph G = (V, E) to represent multi-relational

data set, where the node set V denotes a set of objects,

E ⊆ V × V denotes the set of links between the nodes in

V . Each object i is represented by a feature vector fi ∈ R
d

and is associated with one or several labels. Suppose there

are n objects, m relations, and q possible labels. The task of

this paper is to predict the class labels of unlabeled objects

accurately as much as possible and give the important

relations associated with each class label.

The basic idea of our work is to consider a random

walk in multi-relational data via semantic connections and

feature-based correlations, where the multi-relational data

is represented by a tensor. A Markov chain model is used

to solve a set of tensor equations to obtain the stationary

probabilities of objects and relations for each label, which is

the estimation score for determining the ranking of relations

and labels of objects. By building a tensor-based Markov

chain model, our algorithm can effectively make use of

both labeled and unlabeled data information to boost the

classification and ranking performance.

A. Tensor Representation

We use tensor to represent the multiple relations among

objects [13]. We call A=(ai,j,k) a real (2, 1)th order (n×
m)-dimensional tensor, where i, j = 1, 2, . . . , n, and k =
1, 2, . . . ,m. We refer (i, j) to be the indices for objects and

k to be the indices for relations. Specifically, if an object i
is linked to an object j through the relation k, then ai,j,k is

set to 1. A is a nonnegative tensor for ai,j,k ≥ 0, ∀i, j, k.

We assume that any two objects in multi-relational data

can be connected via some relations, so A is irreducible. As

we would like to determine the stable probability distribu-

tions of both objects and relations simultaneously in multi-

relational data, irreducibility is a reasonable assumption that

we will use in the following analysis and discussion. It is

clear that when A is irreducible, the two corresponding

tensors O and R are also irreducible.

In order to perform semi-supervised learning, we con-

struct a transition probability graph for a Markov chain of

all the labeled and unlabeled objects, and then make use of

the idea in topic-sensitive PageRank [17] and random walk

with restart [18] to propagate the label information from

labeled data to unlabeled data.

In the graph, the Markov transition probabilities

O=(oi,j,k) and R=(ri,j,k) w.r.t. objects and relations can

be obtained by normalizing the entries of A as follows:

oi,j,k =
ai,j,k
n∑

i=1

ai,j,k

, i = 1, . . . , n,

ri,j,k =
ai,j,k

m∑
k=1

ai,j,k

, k = 1, . . . ,m.
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Here, oi,j,k can be interpreted as the probability of visiting

the ith object by given that jth object is currently visited and

the kth relation is used, and ri,j,k can be interpreted as the

probability of using the kth relation given that ith object is

visited from the jth object. Let Xt = [Xt = 1, . . . , Xt = n]
and Zt = [Zt = 1, . . . , Zt = m] be the random variables

referring to visiting any particular object and using any

particular relation respectively at the time t. The transition

probabilities are written as follows:

oi,j,k = P [Xt = i |Xt−1 = j, Zt = k ] ,

ri,j,k = P [Zt = k |Xt = i,Xt−1 = j ] .

If there is a dangling node (ai,j,k is equal to 0 for all

1 ≤ i ≤ n [19]), the values of oi,j,k can be set to 1/n (an

equal chance to visit any object). Similarly, ri,j,k can be

set to 1/m (an equal chance to use any relation), if ai,j,k
is equal to 0 for all 1 ≤ k ≤ m. We call them transition

probability tensors which are analog of transition probability

matrices in Markov chains [20].

B. Transition Probabilities from Connections

Let x be a column vector of length n and z be a column

vector of length m. Let Axz be a vector in R
n such that

(Axz)i =
n∑

j=1

m∑
k=1

ai,j,kxjzk, i = 1, . . . , n.

Similarly, Axx is a vector in R
m such that

(Axx)k =
n∑

i=1

n∑
j=1

ai,j,kxixj , k = 1, . . . ,m.

Given two transition probability tensors O and R, we

study the following probabilities:

P [Xt = i] =

n∑
j=1

m∑
k=1

oi,j,k × P [Xt−1 = j, Zt = k] , (1)

P [Zt = k] =
n∑

i=1

n∑
j=1

ri,j,k × P [Xt = i,Xt−1 = j] , (2)

where P [Xt−1 = j, Zt = k] is the joint probability distribu-

tion of Xt−1 and Zt, and P [Xt = i,Xt−1 = j] is the joint

probability of Xt and Xt−1. Here we employ a product form

of individual probability distributions for joint probability

distributions. Using this assumptions, (1) and (2) become

P [Xt = i] =
n∑

j=1

m∑
k=1

oi,j,k × P [Xt−1 = j]P [Zt = k] ,

P [Zt = k] =
n∑

i=1

n∑
j=1

ri,j,k × P [Xt = i]P [Xt−1 = j] .

Here, we consider to achieve a stationary distribution of

objects, denoted by x̄ = [x̄1, x̄2, . . . , x̄n]
T

with
n∑

i=1

x̄i = 1

and a stationary probability distribution of relations, denoted

by z̄ = [z̄1, z̄2, . . . , z̄m]
T

with
m∑

k=1

z̄k = 1, where

x̄i = lim
t→∞P [Xt = i] , and z̄k = lim

t→∞P [Zt = k]

for 1 ≤ i ≤ n, and 1 ≤ k ≤ m.

Using the above equations, we have

x̄i =
n∑

j=1

m∑
k=1

oi,j,kx̄j z̄k, i = 1, 2..., n, (3)

z̄k =
n∑

i=1

n∑
j=1

ri,j,kx̄ix̄j , k = 1, 2, ...,m. (4)

Formally, under the tensor operations for (3) and (4),

we compute the stationary probabilities of the objects and

relations by solving the following tensor equations:

x̄ = Ox̄z̄, (5)

z̄ = Rx̄2. (6)

C. Transition Probabilities from Nodes

Two objects with similar attributes indicate that they

belong to one class. Hence, the feature-based correlations

among objects can be regarded as the transition probability.

Here, we use a common correlation measure, cosine simi-

larity, to construct the transition probability matrix.

For objects i and j, the cosine similarity is given by

cos (fi,fj) =
fi · fj

‖fi‖ ‖fj‖ .

We construct an n-by-n matrix C = (ci,j) where

ci,j = cos(fi,fj) to store the cosine similarity between

objects i and j. For the entries of each column sum of

the transition probability matrix equal one, we obtain the

transition probability matrix W by normalizing C with

respect to each column,
n∑

i=1

wij = 1, j = 1, 2, ..., n.

We obtain the stable probability distribution of objects

from their attributes by solving the following equation:

x̄ = Wx̄, (7)

with
n∑

i=1

x̄i = 1.

D. The TensorRRCC Algorithm
We start a random walker from the given labeled nodes.

The walker iteratively visits the neighboring nodes with the

transition probabilities O and W given in (5) and (7). At

each step, it has probability α(0 < α < 1) to return the

label information of labeled nodes. A weighting parameter

γ is used to scale the ratio of walking in O and W . We use

β = γ× (1−α) to simplify the description of the equation.

The walker with stationary probabilities will finally stay at
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different nodes. Formally, these stationary probabilities are

computed using the following equation:

x̄ = (1− α− β)Ox̄z̄ + βWx̄+ αl, (8)

where l is an assigned probability distribution vector of size

n referring to the labeled object in the current label c. To

construct l, one simple way is to use a uniform distribution

of the objects with the class label c(c = 1, 2, . . . , q). More

precisely,

[l]i =

{
1/nc, if c ∈ Yi;
0 , otherwise.

(9)

where nc is the number of objects associated with the label

c in the labeled data set, Yi is the label set of object i.
In this paper, We present an iterative algorithm to solve

the tensor equation in (8) and (6) simultaneously. After finite

iterations, we can obtain the stationary probability distribu-

tion of objects and relations for each class label respectively.

We can know the top several relations strongly related with

each label based on the probability distribution of relations.

And the labels of unlabeled data can be predicted based on

the probability distribution of objects.

Algorithm 1 The TensorRRCC Algorithm.

Input: O, R, W , l, x0, z0; Parameters: α, β, ε;

1: repeat
2: set t = t+ 1;

3: xt = (1− α− β)Oxt−1zt−1 + βWxt−1 + αl;
4: zt = Rx2

t ;

5: until ‖xt − xt−1‖+ ‖zt − zt−1‖ < ε;

IV. EXPERIMENTAL RESULTS

In this section, we exhibit that our proposed algorithm

can give a ranking of relations for each class label and

predict for unlabeled examples effectively. We experiment

on two data sets which are extracted from DBLP1 and ACM2

digit libraries respectively. Their characteristics (number of

nodes, features, relations, labels, network density, and label

cardinality) are summarized in Table I.

Table I
SUMMARY OF DATA SETS

Data set #N #F #R #L ND LC

DBLP 4057 8898 20 4 1.96× 10−1 1

ACM 1484 4067 1629 13 1.2× 10−7 1.16

In order to demonstrate the performance of our algorithm,

we compare with the following methods on two data sets.

• HCC: Kong et al. [3] proposed this method for hetero-

geneous network classification, in which the meta path-

based linkage among objects can be viewed as multiple

relations.

1http://dblp.uni-trier.de/
2http://dl.acm.org/

• HCC-SS: We employ a semi-supervised approach semi-

ICA [2] to replace the base classifier ICA in HCC.

• wvRN+RL [7]. It is a collective classification method

which transfers content and structure information to

relationship among objects respectively. Hence, it can

solve multi-relational classification problem.

• EMR: C. Preisach & L. Schmidi-Thieme [21] use an

ensemble to combine multiple relations while ignoring

their difference. We train an ICA classifier for each

relation which votes for the prediction.

• ICA: It is commonly used as a comparison in collective

classification [1]. For multiple relations, we aggregate

them all into one relation for employing this algorithm

to show the necessity of multi-relational setting.

We conduct experiments on both data sets by randomly

picking up {10, 20, 30, 40, 50, 60, 70, 80, 90}% of the

examples as the training data, and the remaining for testing.

A. Experiment on DBLP

In this section, we test our algorithm on data set DBLP

which is reported by J. Ming et al. [22]. DBLP contains

publication from 20 computer science conferences on four

research areas: database (DB), data mining (DM), artificial

intelligence (AI), and information retrieval (IR), and each

of them contains five conferences, see Table II. For each

author, a bag-of-words representation of all the paper titles

published by the author is regarded as its content attribute.

For relations among authors, each conference is regarded as

one relation, and two authors are correlated through one of

them if they have published papers on the corresponding

conference. Each author is assigned with a class label

indicating his/her research area. The task of this experiment

is to give rankings of each conference relations in a research

area and assign labels for the authors based on their content

and relational information.

Table II
RANKINGS OF RELATIONS IN EACH RESEARCH AREA

DB DM AI IR
conf. rk. conf. rk. conf. rk. conf. rk.
VLDB 1 KDD 1 IJCAI 1 SIGIR 1
SIGMOD 2 ICDM 2 AAAI 2 CIKM 2
ICDE 3 PAKDD 3 ICML 3 ECIR 3
EDBT 4 SDM 4 ECML 6 WWW 4
PODS 6 PKDD 6 CVPR 11 WSDM 19

Results and discussion. Figure 2(a) shows the accuracy

results on DBLP. We can see from Figure 2(a) that: i) Our

algorithm always results in best accuracy. The wvRN+RL

considers the feature attribute of examples as one of the

relations which are not competitive with our methods for the

weak effect of content information. ii) Our proposed tensor

representation method outperforms the EMR and ICA ap-

proaches, which both neglect the difference among relations.

This suggests the superiority of tensor-based representation
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idea in learning the multi-relational data. iii) Both ICA and

wvRN+RL without considering the semi-supervised learning

mechanism suffer a performance degradation when there are

less than 20% labeled data. Our method achieves significant

improvement against these baselines in this case.
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(a) DBLP
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(b) ACM

Figure 2. Performance on Datasets W.R.T. Incremental Labeled Data.

B. Experiment on ACM

In this section, we test our algorithm on ACM dataset

which is extracted from the ACM digital library with KDD

conference from 1999 to 2010 and SIGIR conference from

2000 to 2010. Each publication contains the title, keywords,

authors, concepts, conferences, citation, published year, and

index terms. The index terms of papers are given by ACM

based on the ACM CCS3. The feature attribute of each

publication is represented by a bag-of-word vector from its

title. Other information can be organized six relations, i.e.,

authors, concepts, conferences, keywords, published year

and citations. The task of this experiment is to predict the

ACM index terms for publications based on their represen-

tative and relational information.

Results and discussion. For each publication may have

more than one index term, we use the multi-label metric,

macro F1, to measure the performance of all algorithms on

ACM. Figure 2(b) shows that our algorithm outperforms or

equals other methods with different percentage of labeled

data. As the labeled data are less than 40%, our algorithm

has a great superiority. The EMR and wvRN+RL algorithms

perform terribly, which is consistent with the result on DBLP

because they treat all relations equally.

In figure 3, we show the probability distribution of re-

lations in each class label. The height and color of each

bar indicate the probability of the corresponding relation

in current label. We can see the probability distribution of

relations in each class label has a slight difference, but the

rankings are basically consistent. It shows that the ”concept”

and ”conference” relations are more important than others in

the classification process, which means the two relations can

provide enough and highly accurate connected information

(less isolated examples and most connected examples with

similar label sets).

3The ACM Computing Classification Systems: dl.acm.org/ccs/ccs.cfm.

relations
labels

0
0.1
0.2
0.3
0.4
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0.7

citation
author
keyword
year
conference
concept

Figure 3. Relations Ranking of each label on ACM.

C. Sensitivity Study
The TensorRRCC algorithm has two essential parameters

α and γ (β). We test the performance of the algorithm on

DBLP when α varies from 0.1 to 0.99 and γ varies from

0.1 to 0.9 respectively. From Figure 4(a), we see, in general,

the accuracy firstly increases and goes down varying with α
increasing. It gets best when α = 0.8 on DBLP and we set

α = 0.8 as the default value in all experiments. Figure 4(b)

shows the accuracy variance while γ increases. We can see

the algorithm performs best when γ = 0.6 on DBLP, and we

set γ = 0.6 as the default value. While for ACM dataset, we

set γ = 0 to only consider the relational information which

is good enough compared with other algorithms.
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Figure 4. Sensitivity of parameters on DBLP.

D. Convergence study
We discuss the convergence and the performance of the

TensorRRCC algorithm w.r.t. the iteration number. In Figure

5(a), we can see the algorithm gets convergence after more

than 20 iterations on both datasets. The subfigure (b) shows

the accuracy on DBLP varying with the iteration number,

and it gets stable after 3 iterations.

0 5 10 15 20 25
iteration number

10-20

10-10

100
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DBLP
ACM

(a) convergence

1 2 3 4 5 6 7
iteration number
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ra
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(b) accuracy

Figure 5. Convergence of TensorRRCC on Datasets.
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V. CONCLUSION

In this paper, we proposed a tensor based algorithm, Ten-

sorRRCC, for relations ranking and collective classification

in multi-relational data. We represented the multi-relational

data as a three-way tensor and introduced a Markov chain

based scheme to determine the relations ranking and object

labels simultaneously based on the stable probability distri-

bution, which was obtained by using an iterative procedure

to solve the equations. Experimental results on two real-

world data sets demonstrated that the effectiveness of the

proposed algorithm to rank the multiple relations and better

performance than compared methods used in this paper.
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