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Abstract— Network pruning has been widely studied to reduce
the complexity of deep neural networks (DNNs) and hence
speed up their inference. Unfortunately, most existing pruning
methods ignore the changes in the model’s robustness before
and after pruning, which makes pruned models vulnerable
under dynamically perturbed environments (e.g., autonomous
driving). Only a few works have explored the robustness of
pruned models against adversarial attacks that significantly
differ from perturbations in real-world scenarios. To bridge
the gap between real-world applications and existing studies,
in this work, we propose an adversarial pruning scheme, which
automatically identifies and preserves robust channels to obtain
robust pruned models that are suitable for practical deployment
in dynamically perturbed environments. Specifically, to simulate
real-world perturbations, we first employ multi-type adversarial
attack samples and adversarial perturbation samples generated
by an adversarial perturbation generator to create mixed noise
samples. Then, we propose a plug-and-play feature scoring
module and a novel contribution difference loss to evaluate the
robustness of intermediate features dynamically. Next, to leverage
robust intermediate features to identify robust channels, we have
developed a simple but effective gating mechanism that evaluates
the robustness of channels and preserves robust channels during
training. Lastly, we compress the model in a layer-wise or
block-wise manner. Compared to existing methods, our scheme
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enhances the robustness of the pruned model in a broader sense,
making it better able to against dynamic perturbations in the
real world. Extensive experimental results on well-known dataset
benchmarks and popular network architectures demonstrate the
effectiveness of our method.

Index Terms— Network pruning, robustness, dynamically per-
turbed environments, intermediate features, adversarial pruning.

I. INTRODUCTION

IN RECENT years, researchers have extensively explored
the application of DNNs on numerous computer vision

tasks, such as image classification [3], [4], object detection
[5], [6], and video analysis [7], [8], [9]. However, deep models
are often difficult to deploy to some resource-constrained
devices (e.g., smart bracelets, mobile phones, sensors) due
to the enormous computational cost and memory footprint.
To address this issue, various model compression methods
have been proposed to compress and accelerate the deep
model, including network pruning [10], quantization [11],
[12], knowledge distillation [13] and tensor factorization [14],
etc.

Network pruning is an important approach, which aims
to identify and remove unimportant neurons or connections
based on some criterion without significant degradation in
performance. Existing pruning methods can be divided into
two categories: unstructured pruning [15] and structured prun-
ing [16], [17], [18]. Unstructured pruning can achieve a
higher compression ratio than structured pruning by discarding
unimportant weights. However, the pruned weight matrices are
irregularly sparse, which may limit the actual network accel-
eration. Therefore, unstructured pruning requires dedicated
hardware and software to accelerate inference. In contrast,
structured pruning is a more prevalent approach, which prunes
unimportant channels to get a structured pruned model. Since
structured pruning does not rely on additional hardware or
libraries, it is more commonly used in practice.

Although existing network pruning can effectively improve
the model’s efficiency, it may compromise the robustness of
the model. As shown in Fig. 1, existing pruning methods
cause a decrease in the robustness of the pruned model.
We analyze existing pruning methods, as shown in Fig. 2 (a),
most current pruning methods using a three-stage pipeline:
1) Training a model on a target data to obtain a well-trained
pre-trained model, 2) Pruning the pre-trained model on the
same data based on some criteria, 3) Fine-tuning the pruned
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Fig. 1. Comparison of our method with CHIP [1] and OTOv2 [2] regarding
efficiency and robustness before and after pruning. Experiments are conducted
on CIFAR-10 and VGG-16. FLOPs refer to floating point operations. ℓ1 Acc.,
ℓ2 Acc. and ℓ∞ Acc. are the attack accuracy under ℓ1 attack, ℓ2 attack
and ℓ∞ attack, respectively. mCE represents the mean Corruption Error on
CIFAR-10-C, the lower the better. Best viewed in color.

model on the same data to recover its accuracy. The above
three stages are all executed on static target data, which
makes the pruned model have no apparent performance loss on
static data but may perform poorly in dynamically perturbed
environments. On the one hand, dynamic perturbations can
lead to a mismatch in the test and training data distribu-
tions, i.e., data distribution shift. Even if the shift is mild,
the performance of models can be severely affected [19].
On the other hand, the information preserved in pruned models
obtained using conventional pruning methods is relatively
dependent on the distribution of the original data. Although
some adversarial attack-based pruning methods have been
proposed to obtain robust pruned models, these pruned models
are still unsatisfactory in practice due to the large difference
between adversarial attacks and real-world dynamic perturba-
tions. Actually, the pruned model may inevitably be applied
in various real-world scenarios with dynamically perturbed
environments. For example, deploying the pruned model in
autonomous driving, which requires the pruned model to
be able to make reliable predictions under changing driving
conditions, such as severe weather conditions (e.g., rain,
snow and fog) and sensor degradation (e.g., gaussian noise,
elastic transform and motion blur), etc. These highlight the
importance of considering the robustness of the pruned model
as an evaluation metric. How to simultaneously reduce the
computational overhead and maintain performance, including
robustness, on resource-constrained devices becomes a chal-
lenging but important problem to be solved.

To tackle the above challenge, previous works have explored
enhancing the robustness of pruned models against adversar-
ial attacks while pruning, such as [20] and [21]. However,
these methods focus only on improving robustness against
artificially designed adversarial attacks, which is less relevant
to most real-world applications than natural corruptions [22],
[23]. On the other hand, some recent work [24], [25] has not
yet agreed on whether improving the robustness of a model
against adversarial attacks will simultaneously improve the
robustness against natural corruptions. In order to improve
the robustness of the model in a broader sense, we should
consider the characteristics that a robust model should embody.

We believe that robust models are more tolerant to noisy
samples than weak models. Specifically, a pair of clean and
noisy samples is fed into the robust model, and the model
should make similar predictions. Furthermore, an ideal robust
neuron extracts intermediate features from a pair of clean
and noisy samples that should contribute equally to the final
prediction of the model.

Under this view, in this work, we propose an adversarial
pruning scheme to improve the robustness of pruned models in
a broader sense. Our scheme is based on mixed noise samples
to obtain a robust pruned model by identifying and preserving
robust channels. First, we learn mixed noise samples to simu-
late complex real-world environments. Specifically, we utilize
multi-type iterative adversarial attacks to generate a variety of
input-dependent adversarial attack samples. In order to better
identify robust features, we further learn input-independent
adversarial perturbation samples by proposing a Gaussian
noise-based adversarial perturbation generator that randomly
perturbs the input during adversarial pruning. After obtain-
ing adversarial attack samples and adversarial perturbation
samples, we merge the two to get mixed noise samples for
identifying robust features. Unlike other adversarial pruning
methods that directly identify robust channels or weights,
our scheme identifies robust channels from the perspective of
identifying robust intermediate features, which is beneficial
to dynamically identifying robust channels based on dynamic
input. To this end, we then design a plug-and-play feature
scoring module that dynamically evaluates the robustness
score of intermediate features. Moreover, in light of the above
view on ideal robust neurons, we propose a novel contribution
difference loss to align the contributions of clean and noisy
intermediate features at each layer of the model to identify
robust intermediate features. Next, we adopt a simple yet
effective gating mechanism, which exploits the robustness
score of intermediate features from clean and noisy samples
to identify the robustness channels of the model. Finally,
we follow the three-stage pipeline in network pruning to
compress the model with our proposed adversarial pruning
scheme in a layer-wise or block-wise manner, see Fig. 2 (b).
Our work improves the robustness of pruned models in a
broader sense, as our work not only investigates to improve the
robustness against adversarial attacks, but also tries to improve
the robustness against natural corruptions.

We evaluate our proposed adversarial pruning scheme on
VGG-16, ResNets, and MobileNet-V2. We also report the
robustness of pruned models obtained by some state-of-the-
art pruning methods, and the evaluation results show that they
reduce the robustness of the model when pruning. Compared
with them, our method shows a clear advantage: pruned mod-
els with similar memory footprint and computational overhead
possess higher robustness.

To summarize, we highlight our main contributions as
follows:

(1) We consider the robustness of the pruned model in
a broader sense. In light of this, we propose an adversarial
pruning scheme, which can prune the model without causing
obvious degradation in the model’s performance, including its
robustness.
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Fig. 2. An illustration of the common pruning scheme and our adversarial pruning scheme. The main difference is that our scheme involves more data in
both the pruning pipeline and the application scene than the common scheme.

(2) To be more flexible in identifying robust channels,
we used various means to generate mixed noise samples
to simulate dynamically changing environments, which is
beneficial to identifying channels that are robust enough to
perform well in real-world scenarios. Moreover, we propose a
plug-and-play feature scoring module and a novel contribution
difference loss to identify robust intermediate features. Based
on the robustness of the intermediate features, we construct a
gating mechanism to identify and preserve robust channels.

(3) We conduct extensive experiments to evaluate the robust-
ness of pruned models obtained from state-of-the-art methods
and our adversarial pruning scheme. The experimental results
show that pruned models obtained by our method have higher
robustness than other methods. We also conduct ablation
studies to demonstrate the effectiveness of each component
of the proposed scheme.

II. RELATED WORK

Our work is most closely related to channel pruning, robust-
ness against adversarial attacks, and robustness against natural
corruptions. In this section, we provide a brief overview of
each of these topics.

A. Channel Pruning

Channel pruning [16], [17], [26], [27] is a popular method
that reduces model complexity by removing unimportant
channels. Various algorithms are proposed to evaluate the
importance of channels. Reference [28] utilizes “smaller-
norm-less-important” assumption to prune channels with
smaller norm values. However, this hypothesis usually requires
two pre-conditions to be satisfied: the distribution deviation of
the norm value of the channel is large enough and the norm
value of the channel that will be removed should be small
enough. Hence, [29] proposes a geometric median based filter
pruning method that achieves competitive performance even
when the above two pre-conditions cannot be fully satisfied.
Reference [30] proposes a novel low-rank guided pruning
scheme to obtain skeleton neural networks by alternatively
training and pruning CNNs. Reference [31] explores the dis-
criminative feature of feature maps and explicitly investigates
the two-adjacent-layer features of each layer to propose a

three-phase hierarchical pruning framework. Reference [32]
proposed a new method based on LASSO regression to
measure the importance of channels by minimizing the feature
reconstruction error between the pre-trained feature maps and
the compressed ones. Zhuang et al. [16] introduce additional
discrimination-aware losses in the fine-tuning and channel
selection stages, which was able to increase the discriminative
power of the features that are preserved after pruning. Ref-
erence [33] proposes to simultaneously address the problems
of pruning indicator, pruning ratio, and efficiency constraint.
Reference [28] first proposes a soft filter pruning method,
which allows pruned filters to be updated during training.
Since Batch Normalization (BN) layers are widely used in
DNNs, network slimming [18] imposes regularization on the
scaling factor γ of the channels in each layer, and then prunes
filter with smaller scaling factors. Lin et al. [17] proposed
pruning the filters that generate low-rank feature maps.

B. Robustness Against Adversarial Attacks

Adversarial examples were first proposed by Szegedy et al.
[34]. An adversarial example is a clean image perturbed by a
small distortion to fool a neural network. Popular techniques
for improving the robustness of models against adversarial
examples are: adversarial training [35], modifying the model
structure [36], data augmentation [37] and designing the loss
function [38], etc. In this paper, we only discuss the most rel-
evant technique: adversarial training. Adversarial training and
its variants improve the robustness of the model by minimizing
the training loss on adversarial samples. Goodfellow et al.
[39] train DNNs on adversarial examples generated by Fast
Gradient Sign Method (FGSM). Besides FGSM, some works
have also explored adversarial training based on Projected
Gradient Descent (PGD) [40]. Since adversarial robustness
and standard accuracy are negatively correlated, to balance
the two, TRADES [35] is proposed. Reference [41] proposes
a vulnerability suppression loss to minimize the vulnerability
of latent features and a Bayesian-based approach to remove
latent features with high vulnerability.

Due to the requirements of practical applications, some
works have investigated whether model compression and
adversarial robustness can be performed together. Reference
[40] argues that adversarial robustness is proportional to the
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capacity of the model. In contrast, Guo et al. [42] demonstrated
that appropriately increasing the sparsity of the model is
beneficial to improve the adversarial robustness of the model.
Reference [20] proposes a framework of parallel adversar-
ial training and weight pruning to achieve a compact and
robust model. HYDRA [21] transforms the weight pruning
problem into an empirical risk minimization problem with a
robust training objective and solves it by Stochastic Gradient
Descent (SGD). Reference [43] experimentally demonstrated
that pruned models do not inherit the adversarial vulnerability
of original models. Unlike other adversarial pruning methods
that are studied only for adversarial attacks, our scheme is
not only for adversarial attacks, but also for natural pertur-
bations that are closer to real-world perturbations. In short,
we improve the robustness of the pruned model in a broader
sense. Furthermore, compared with existing methods that
directly identify channels, we identify robust channels from
the perspective of identifying robust intermediate features.
This flexible mechanism helps the model adaptively identify
channels according to the characteristics of dynamic input,
resulting in a robust pruned model.

C. Robustness Against Natural Corruptions

In addition to being vulnerable to adversarial attacks, deep
models are also vulnerable to natural corruptions, such as
impulse noise, defocus blur, and snow. Essentially, natural
corruptions is data shift, where models trained on clean data
have struggled to perform well on unseen data with distor-
tion. There have been some methods proposed for resolving
this problem. To improve generalization performance, some
works have explored data augmentation. For example, Cutout
[44], CutMix [45] and AugMix [46], etc. Calian et al. [47]
proposes adversarial augmentations, which find the parameters
of image-to-image models to generate adversarially corrupted
augmented images. Guo et al. [48] enhances the weak subnets
that show particularly poor robustness on perturbations of the
model to improve the robustness of the model on perturbed
inputs. Reference [22] demonstrates that data augmentation
with Gaussian or Speckle noise can effectively improve robust-
ness against natural corruptions, and designs an adversarial
perturbation generator that generates auxiliary noise distri-
butions. Reference [49] proposes to dynamically suppress
the most discriminative features of DNNs to yield richer
discriminative features, which contributes to the robustness of
classification performance. To the best of our knowledge, there
are few existing studies investigating the robustness of pruned
models against natural corruptions, and most works evaluate
the robustness of pruned models only on adversarial attack
samples.

D. Relationship Between Adversarial Robustness and
Robustness to Natural Corruptions

Based on previous work, we find that these works have no
agreement on the relationship between adversarial robustness
and robustness to natural corruptions. Some studies have
shown that improving adversarial robustness also improves
robustness to natural corruptions, but others hold the opposite

view. Gilmer et al. [25] claims that improving one type
of robustness can also improve another type of robustness.
On the other hand, Engstrom et al. [24] found that improving
adversarial robustness against ℓ∞ attacks does not improve
robustness against translations and rotations. Reference [22]
report adversarially trained model have drops in accuracy on
all noise classes of ImageNet-C. Laugros et al. [23] suggests
that the robustness of neural networks should be addressed
in a broader sense. While existing works have extensively
explored a variety of effective approaches to address one of
these challenges, only a few works have studied them jointly.

III. METHODOLOGY

Our proposed adversarial pruning scheme aims to build
robust pruned models by automatically identifying and pre-
serving robust channels. Specifically, we first generate mixed
noise samples to simulate dynamic perturbations in real-world
scenarios. Then, based on the generated mixed noise samples,
we utilize the proposed feature scoring module to dynamically
evaluate the robustness scores of intermediate features during
training. Besides, we introduce a novel contribution difference
loss to identify robust intermediate features more efficiently by
aligning contribution scores and making contribution scores
sparse. Next, to identify robust channels using the robustness
scores of intermediate features, we propose a simple but
effective gating mechanism to identify and preserve robust
channels. Finally, fine-tuning the pruned model on both clean
and noisy samples to recover accuracy and robustness. Repeat
the above steps until all the layers or blocks that need to be
pruned in the model have been traversed. See Algorithm 1,
which gives a more detailed introduction to the pipeline of
our proposed method.

In this section, we detail the principles of our scheme. The
overall of our proposed scheme is shown in Fig. 3. First, some
preliminary contents related to our method are briefly pre-
sented in Subsection A. Then, the process of generating mixed
noise samples is detailed in Subsection B. Next, the feature
scoring module and the contribution difference loss proposed
by our work are introduced in Subsection C. To identify robust
channels based on robust intermediate features, we construct a
gating mechanism to identify and preserve robust channels in
Subsection D. Finally, we give the overall objective function
of our method in Subsection E.

A. Preliminaries

To better introduce what is in our method, we first formally
introduce some preliminaries related to our work. Suppose a
model fθ (·) with trainable parameters θ = {W1, . . . ,WL}.
Under the assumption that bias and rectified linear units are not
considered, the l-th layer of the model can be parameterized
as Wl ∈ RNl+1×Nl×K×K , 1 ≤ l ≤ L , where L is the number
of convolutional layers in the network, Nl+1, Nl and K are
the number of output channels, the number of input channels
and the size of the convolution kernels of the l-th layer,
respectively. Let Ol and Ol+1 denote the input and output of
the l-th layer, respectively. The convolution process of the l-th
layer can be represented as Wl ⊗ Ol , where ⊗ represents the
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Fig. 3. An overview of our proposed adversarial pruning scheme. Our method consists of two main components: generating mixed noise samples, identifying
and preserving robust channels. Multi-type adversarial attacks and generated perturbations from the adversarial perturbation generator are used to obtain mixed
noise samples. The feature scoring module (FSM) dynamically evaluates the robustness score (i.e., Sc

l and Sn
l ) of intermediate features (i.e., Fl and F̂l ), and

the contribution difference loss aligns the robustness score of both intermediate features. The robustness score of intermediate features is translated into the
robustness score of the channels (i.e., Sl ) using the constructed gating mechanism (Average + Gate) to automatically remove the corresponding channels
(0: remove), and the compression control loss is introduced to meet the desired compression ratio.

convolution operation. Suppose a dataset D = {X, Y }, random
sampled input x ∈ X and its corresponding label y ∈ Y . The
prediction of the model can be defined as:

yp = fθ (x) =WL ⊗ (WL−1 ⊗ (· · · (W1 ⊗ x))), (1)

where yp denotes the final prediction of the model when the
input is x . For the vanilla image classification tasks, optimize
the parameters of the model by solving:

min
θ

E(x,y)∼DLce ( fθ (x) , y) , (2)

where Lce is the loss function often used for classification
tasks, such as cross-entropy loss and 0-1 loss, etc.

Channel pruning aims to optimize the channel layout and
parameters to obtain a compact model, most channel pruning
methods can be simply formulated as:

min
θ,M

E(x,y)∼DLce ( fθ⊙M (x) , y)+ λ ∥M∥1 ,

subject to ∥M∥0 ≤ R, (3)

where M = {M1, · · · ,ML} ,Ml ∈ RNl+1 , 1 ≤ l ≤ L
is the binary mask used for channel selection, θ ⊙ M =

{W1 ⊙M1, · · · ,WL ⊙ML}, where ⊙ represents element-
wise multiplication. λ is a penalty coefficient, R is the number
of reserved channels.

Adversarial training is an effective method to improve
the robustness of a model. Adversarial training maximizes
perturbations by introducing data with perturbations to fool
the model, while minimizing the adversarial risk on the overall
task. In essence, this is a min-max optimization problem:

min
θ

E(x,y)∼D

[
max
∥δ∥≤ε

Lce ( fθ (x + δ) , y)

]
, (4)

where δ refers to the learned adversarial perturbation, which
is limited by the allowed perturbation size ε. x + δ is a
noisy sample. In this paper, noisy samples do not exclusively
refer to artificially designed adversarial attacks, but rather
refer to various forms of adversarial noise, e.g., adversarial
perturbation samples and adversarial attack samples. To obtain
a robust pruned model, there are two immediate solutions.
One is to obtain an adversarially trained model by using
adversarial samples, and then prune it. The other solution
is to fine-tune or retrain the pruned model on adversarial
samples. However, Ye et al. [20] argue that both solutions
have significant challenges. The adversarially trained model
is less sparse than the non-adversarially trained model, which
makes pruning more difficult. Additionally, the adversarially
trained model requires a larger model size to achieve better
standard and adversarial accuracy, which makes it difficult
to obtain robust pruned models by fine-tuning or retraining
pruned models.

B. Generating Mixed Noise Samples

Our objective is to achieve robust pruned models capable
of simultaneously addressing natural corruptions and adver-
sarial attacks. This goal distinguishes our work from existing
research, as conventional studies tend to focus solely on
enhancing robustness in one of these aspects or improving the
robustness of unpruned models. Hence, to obtain high-quality
adversarial samples, simulate real-world dynamic changes,
and thereby enhance the robustness of the pruned model,
we propose to generate mixed noise samples.

Randomly sampling a pair of data (x, y) from data distri-
bution D = {X, Y }, for the model fθ (·), the adversarial attack
δadv on sample x can be obtained by performing multi-step
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Algorithm 1 Pipeline of the Adversarial Pruning Scheme
Input: Well-trained model fθ ; Clean data distribution D;

Adversarial perturbation generator Gϕ ; Maximum iter-
ations Ti for identifying robust channels; Maximum
iterations T f for fine-tuning the pruned model; Batch size
B; Feature scoring module MF ; Number of layers or
blocks to be pruned L; Maximum iterations for fine-tuning
in the last layer or block T f l .

Output: A robust pruned model fθ ′.
1: for l = (1, . . . ,L) do
2: Insert the feature scoring module MF into the l-th layer

or block.
3: for ti = (1, . . . , Ti ) do
4: Randomly sample mini-batches of size B from clean

data distribution D.
5: Use a portion of the mini-batches to generate adver-

sarial attack samples (Eq. 5).
6: Use another portion of the mini-batches to gen-

erate adversarial perturbation samples utilizing the
designed adversarial perturbation generator Gϕ (Eq.
6).

7: Fed the sample mini-batches of size B and the
corresponding mixed noise samples into the model
fθ .

8: Use the feature scoring module and the contribution
difference loss to evaluate the robustness score of
intermediate features (Eqs. 7, 8, 9).

9: Compute the sparse robustness score of channels (Eq.
10).

10: Use the gating mechanism and compression control
loss to identify and preserve robust channels (Eq. 11).

11: end for
12: Perform real pruning on the current layer or block.
13: if l == L then
14: T f ← T f l
15: end if
16: for t f =

(
1, . . . , T f

)
do

17: Fine-tune the pruned model (Eq. 12).
18: end for
19: end for
20: return A robust pruned model fθ ′.

gradient based attacks, such as PGD as follows:

δt+1
adv

= Proj
x+B(δadv,ε)

(
δt

adv + α · sgn
(
∇δt

adv
Lce

(
fθ
(
x + δt

adv

)
, y
)))

,

(5)

where Proj represents a projection operation for projecting
the input onto the allowed perturbation set B(δadv, ε) ={
δadv ∈ Rm

| ∥δadv∥p ≤ ε
}
, α is the step size of PGD, sgn(·)

returns the sign of the vector, δt
adv is the adversarial attack at

the t-th PGD step. In particular, the initial perturbation δ0
adv is

chosen randomly from the perturbation set B(δadv, ε). After
obtaining the adversarial attack δT

adv of the last PGD step,
we add it to the clean input x to obtain adversarial attack

samples, i.e., xadv = x + δT
adv , where T is the maximum

number of attack steps, xadv is attack adversarial sample.
Inspired by [50], in our work, we introduce multi-type adver-
sarial attack samples obtained by using stochastic multi-type
iterative adversarial attacks. Specifically, we randomly choose
the type of adversarial attack from ℓ1 attack, ℓ2 attack and ℓ∞
attack to obtain multi-type adversarial attack samples.

To improve the robustness of the model against natural
corruptions, we propose a Gaussian noise-based adversarial
perturbation generator to generate input-independent pertur-
bation. For a given image x and its corresponding label y,
we input z ∼ N (0, σ 2I) that is consistent with the shape of x
to our generator Gϕ with parameters ϕ. We fix the parameters
θ of the model to optimize the generator:

max
ϕ

E(x,y)∼D Eδgen∼1

[
Lce

(
fθ
(
clip

(
x + δgen

))
, y
)]

, (6)

where δgen ∈ Rd is the output of the generator Gϕ(z), 1 ={
δgen ∈ Rd

|
∥∥δgen

∥∥
2 ≤ ξ

}
denotes that the δgen is projected

onto a norm-ball
∥∥δgen

∥∥
2 ≤ ξ by scaling the output of the

generator, ξ is the maximum allowed perturbation size, clip
is to constrain the value of the generated perturbation sample
xgen = x + δgen to an interval [0, 1]d to ensure it does not
exceed its natural range.

Our designed perturbation generator consists of four con-
volutional layers with one residual connection from input
to output. The first three convolutional layers have ReLU
activation and the number of output channels is set to 20.
Except for the second convolutional layer, the kernel size of
each convolutional layer is 1. The kernel size of the second
convolutional layer is 3, and after the convolutional operation,
an Instance Normalization Layer is introduced to learn detailed
perturbations. It is worth noting that several previous studies
[22], [50] have proposed to learn the input-independent pertur-
bation samples using an adversarial perturbation generator to
improve the robustness of models. However, these generated
perturbation samples are only used independently to improve
the robustness of unpruned models against either adversarial
attacks or natural corruptions, which is different from our
purpose of designing perturbation generator to improve the
robustness of pruned models against both adversarial attacks
and natural corruptions.

To consistently identify robust intermediate features during
training, we merge the two noisy samples to obtain mixed
noise samples. The specific procedure for obtaining mixed
noise samples is to take η% of clean samples from each
mini-batches to obtain adversarial attack samples, then, use
another (100 − η)% of clean samples to obtain generated
perturbation samples, and finally, merge adversarial attack
samples xadv and generated perturbation samples xgen to
obtain the mixed noise samples x̂ .

C. Identifying Robust Features

Inspired by dynamic neural networks, it is possible to
enhance efficiency and maintain good accuracy by adjusting
the network’s structure or parameters based on the input.
In our work, a feature scoring module is proposed to evaluate
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the robustness of intermediate features dynamically. In con-
trast to dynamic neural networks, our proposed module uses
a pre-trained model to evaluate the robustness of interme-
diate features. Since the structure and parameters of the
pre-trained model do not change drastically during training
in our method, the representational power of each neuron
does not change drastically. In other words, the properties
of the features extracted by each neuron are relatively stable
during training. Therefore, for an ideal robust neuron, the
features extracted from a pair of clean and noisy samples
are typically distinct, but the contribution of these features to
the final prediction of the model should be similar. In our
work, to identify robust intermediate features, we propose
a contribution difference loss to align the contribution of
each pair of intermediate features (clean features and noisy
features).

We denote the intermediate features of l-th layer by Fl ∈

RB×C×H×W , where B is the mini-batch size, C , H and W
are the number of channels, height and width of the interme-
diate feature, respectively. First, to avoid high computational
overhead, we use a 5×5 global average pooling to reduce the
spatial size of every intermediate feature to obtain Fl;gap =

Avgpool(Fl) ∈ RB×C×5×5. Then, two 3 × 3 convolution
operations and one ReLU activation are performed on the
pooled intermediate features to score the robustness of every
intermediate feature:

Sc
l = Conv2(ReLU (Conv1(Fl;gap))), (7)

where Sc
l =

{
Sc;i, j

l ∈ R1×1
|1 ≤ i ≤ B, 1 ≤ j ≤ C

}
indicates

the robustness score of clean intermediate features of l-th
layer. It is worth noting that the feature scoring module
will be removed after the robustness of the feature is eval-
uated and before pruning, which does not bring additional
cost.

We utilize the same feature scoring module to evaluate
the robustness of intermediate features from clean samples
and noisy samples. Based on this, we propose a contribution
difference loss to identify robust intermediate features. When
given a pre-trained model, since the representational power
of neurons is fixed, even though the features extracted by
the same neuron on different inputs may be very different,
i.e., the extracted features contain different information, but
these features should show similar contributions to the final
predictions of the model. Motivated by this, we propose
to align the contribution between clean features and noisy
features of each layer of the network.

In our work, in each training iteration, a mini-batch of
clean samples and a mini-batch of noisy samples are fed
into the model at the same time. As mentioned above, the
output of the feature scoring module, i.e., the robustness score
of intermediate features: Sc

l and Sn
l , can be used to indicate

the contribution of the corresponding intermediate features to
the final prediction. Therefore, based on our proposed feature
scoring module, we define the contribution of features from
clean samples and noisy samples to the final prediction of the
model as Sc;:,:

l and Sn;:,:
l , respectively. Thus, the difference

between the contribution of clean features and noisy features

of l-th layer to the final prediction can be formulated as:

d
(

Sc;i, j
l , Sn;i, j

l

)
def
=

1
B × C

B∑
i=1

C∑
j=1

∥∥∥Sc;i, j
l −Sn;i, j

l

∥∥∥ , (8)

where d indicates the Manhattan distance. In particular, for
ResNet and MobileNet, multiple feature scoring modules are
simultaneously inserted in the block that will be pruned.
Therefore, we consider all inserted feature scoring modules
to evaluate the difference between the contribution of clean
and noisy features in the entire block:

Lcd
def
=

1
M

M∑
m=1

d
(

Sc;i, j
l;m , Sn;i, j

l;m

)
, (9)

where M is the number of feature scoring modules inserted
in the block.

D. Identifying and Preserving Robust Channels

In order to identify robust channels using robust inter-
mediate features, we construct a simple yet effective gating
mechanism. We first average the robustness scores of interme-
diate features for clean samples Sc

l and corresponding noisy
samples Sn

l , i.e., Sl;m = mean(Sc
l , Sn

l ), where mean indicates
that the operation is to average Sc

l ∈ RB×C×1×1 and Sn
l ∈

RB×C×1×1 to obtain the robustness score Sl;m ∈ R1×C×1×1

of channels. Then, we introduce a scaled gate function that
makes the robustness score of channels sparse:

Sl = 0.5×
(
tanh

(
β × Sl;m

)
+ 1

)
, (10)

where Sl is the sparse robustness score of channels in the
l−th layer, Sl ∈ RNl+1 , 1 ≤ l ≤ L , β is a hyper-parameter
that controls the strength of the scaled gate to limit the output.
As the value of β gradually increases, the scaled gate function
will output a nearly binary robustness score of channels.
Next, we apply a smaller global pruning threshold T to all
layers in training to make the smaller channel robustness
scores become zero, which helps to pay more attention to
the learning of robust channels during training while ensuring
the final prediction does not suffer from vulnerable channels.
In other words, some channels with robustness scores lower
than T will be identified and pre-removed (set to zero) during
training. Further, to provide precise control over the pruning
ratio to obtain pruned models with different performances,
we introduce a compression control loss function as follows:

Lcc =

∥∥∥∥∥Sl∥1

K
− p

∥∥∥∥2

2
, (11)

where K is the length of the sparse robustness score vector
Sl , p ∈ [0, 1] is the percentage of channels expected to be
preserved. Finally, the channels corresponding to zero values
of the sparse robustness score vector will be removed after
training to achieve real pruning.

E. Overall Objective Function

In this subsection, we give the overall objective function.
Identifying robust channels or fine-tuning pruned models is
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performed on clean samples and corresponding noisy samples.
Therefore, our classification loss needs to consider the loss on
both clean and noisy samples. Moreover, in order to gradually
reduce the interference of less robust channels to the final
prediction during training, their learning is stopped according
to their sparse robustness score S. The classification loss
function is denoted as follows:

Lcls. = Lce ( fθ⊙S (x) , y)︸ ︷︷ ︸
clean cls.loss

+ λ1Lce
(

fθ⊙S
(
x̂
)
, y
)︸ ︷︷ ︸

noise cls. loss

, (12)

where θ ⊙ S = (W1 ⊙ S1, · · · ,WL ⊙ SL), x̂ is mixed
noise sample that corresponds to clean sample x , cls. is
the abbreviation of classification, λ1 controls the magnitude
of classification loss on noisy samples. By combining the
compression control loss and the contribution difference loss
mentioned above, the overall loss is as follows:

Loverall = Lcls. + λ2Lcc + λ3Lcd , (13)

where λ2 and λ3 are hyper-parameters used to adjust the
relative magnitude of each loss. To recover the accuracy and
robustness of the pruned model, the pruned model is fine-tuned
using Eq.12 after the pruning is completed. Lcc in Eq. 13
is the compression control loss used to control the pruning
ratio. When fine-tuning the pruned model, there is no need
to control the pruning ratio, so Lcc is not needed. Moreover,
Lcd in Eq. 13 is the contribution difference loss, which aligns
the contribution between clean and noisy intermediate features.
The robust channels preserved in the pruned model can extract
intermediate features with similar contributions for clean and
noisy inputs, thus not requiring Lcd .

IV. EXPERIMENTS

In this section, we empirically study the benefits of our
proposed adversarial pruning scheme.

A. Experimental Setup

1) Datasets and Networks: We conduct experiments based
on CIFAR-10 [51] and ImageNet [52], in addition, CIFAR-10-
C [53], ImageNet-C [53] and ImageNet-R [54] are used to test
the robustness of the pruned model. CIFAR-10 contains 50,000
natural images for training and 10,000 natural images for test-
ing, which are categorized into 10 classes. ImageNet contains
over one million natural images for training and 50,000 natural
images for testing, which are categorized into 1,000 classes.
CIFAR-10-C and ImageNet-C are designed to evaluate the
robustness of the model against natural corruptions. It was
generated by adding 15 different natural corruptions to the
original test set images, with 5 levels of severity for each
corruption type, resulting in an overall 75 different corruptions.
ImageNet-R has renditions of 200 ImageNet classes, resulting
in 30,000 images. These renditions include art, cartoons,
deviantart, graffiti, embroidery, graphics, origami, paintings,
patterns, plastic objects, plush objects, sculptures, sketches,
tattoos, toys, etc. ImageNet-200 is the original ImageNet data
restricted to ImageNet-R’s 200 classes. They are commonly
used to evaluate the out-of-distribution robustness of models.
To effectively demonstrate the benefits of our work, several

popular network structures are adopted in our experiments.
For CIFAR-10, we evaluate our method on three network
structures: VGG-16 [55], ResNet-56 [4] and ResNet-110 [4].
For ImageNet, we evaluate our method on three network
structures: ResNet-18, ResNet-50 and MobileNet-V2 [56].
Since our method is based on pre-trained models, all network
structures will be pre-trained before being fed into the adver-
sarial pruning scheme.

2) Evaluation Metrics: To compare our proposed method
with some state-of-the-art pruning methods, we evaluate the
performance of the pruned model by multiple metrics. Param-
eters and FLOPs are employed to evaluate the model size and
computational overhead. For CIFAR-10, we use Top-1 accu-
racy to evaluate the classification performance of the model.
For ImageNet, we use Top-1 accuracy and Top-5 accuracy to
evaluate the classification performance of the model on a large-
scale dataset. To evaluate the robustness against adversarial
attacks, we evaluate the attack accuracy of the model under
multiple types of PGD adversarial attacks. e.g., ℓ∞, ℓ1, and
ℓ2 attack. For CIFAR-10, we use ε =

{
2000
255 , 128

255 , 8
255

}
and

α =
{

255
255 , 25

255 , 1
255

}
for ℓ1, ℓ2 and ℓ∞ attacks respectively.

For ImageNet, we use ε =
{

2000
255 , 80

255 , 4
255

}
and α ={

255
255 , 25

255 , 1
255

}
for ℓ1, ℓ2 and ℓ∞ attacks respectively. For

CIFAR-10 and ImageNet, we use 200 steps and 20 steps
of PGD attack for attack, respectively, during evaluation.
Moreover, to evaluate the robustness of the pruned model
against natural corruptions, we adopted mean Corruption Error
(mCE) on the CIFAR-10-C and ImageNet-C. mCE is the
mean of the corruption error of the pruned model over all
corruptions. In particular, for ImageNet-C, the corruption error
(CE) is defined as:

CE f
c =

( 5∑
s=1

E f
s,c

)/( 5∑
s=1

EAlexNet
s,c

)
, (14)

where E f
s,c and EAlexNet

s,c are the Top-1 errors of model f and
AlexNet for a corruption c with severity s, respectively. For
ImageNet-R, we use Top-1 accuracy to evaluate the out-of-
distribution robustness of the pruned model. The batch size
for all the robustness tests mentioned above is set to 256.

It is worth noting that existing studies [20], [22], [35]
have shown that adversarially trained models often strug-
gle to achieve similar standard accuracy compared to
non-adversarially trained models, and this phenomenon is
especially evident for pruned models. Therefore, in our work,
pruned models obtained by our method are usually slightly
weaker than pruned models obtained by other methods in
terms of standard accuracy, but standard accuracy is still
competitive. We evaluate the performance of pruned models in
terms of comprehensive performance. For a fair comparison,
we refer to the results reported by other methods on some
evaluation metrics: standard accuracy, parameters, and FLOPs.

3) Implementation Details: We use PyTorch [61] to imple-
ment the proposed adversarial pruning scheme and train
the network with stochastic gradient descent (SGD) with a
momentum of 0.9. All experiments are conducted on Nvidia
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GeForce RTX 3090 GPU. For the setting of the baseline
model on CIFAR-10, the batch size for training, the batch
size for testing, weight decay, initial learning rate and epoch
are set to 128, 256, 1e-4, 0.1 and 200, respectively. For
the baseline model on ImageNet, we use the pre-trained
model officially provided by PyTorch as the baseline model.
Set η to 30 for generating adversarial attack samples. The
remaining samples are used to generate adversarial pertur-
bation samples. For both CIFAR-10 and ImageNet, we set
the allowed maximum perturbation size, the learning rate of
the adversarial perturbation generator to 135, and 0.001 for
generating adversarial perturbations, respectively. For CIFAR-
10, we use ε =

{
2000
255 , 128

255 , 8
255

}
and α =

{
255
255 , 25

255 , 1
255

}
for ℓ1, ℓ2 and ℓ∞ attacks respectively. For ImageNet, we use
ε =

{
2000
255 , 80

255 , 4
255

}
and α =

{
255
255 , 25

255 , 1
255

}
for ℓ1, ℓ2 and

ℓ∞ attacks respectively. We use 10 steps of PGD attack for
ℓ1, ℓ2 and ℓ∞ to generate adversarial perturbations. Other
hyper-parameters are the same as those in the training of the
baseline model. For CIFAR-10, we set the initial learning rate,
epoch and pruning threshold to 0.01, 20 and 0.05 respectively
to identify and preserve robust channels. To identify and
preserve robust channels on ImageNet, we set the initial
learning rate, epoch and pruning threshold to 0.001, 12 and
0.05, respectively. After each layer or block to be pruned is
pruned, we fine-tune the entire model to recover performance.
When fine-tuning, we also set η to 30 to generate mixed
noise samples. We set the initial learning rate and epoch to
0.01 and 20 for fine-tuning on CIFAR-10. We set the initial
learning rate and epoch to 0.001 and 20 for fine-tuning on
ImageNet. Specifically, the epoch is set to 30 for fine-tuning
the entire model after the last layer or block that needs to
be pruned is pruned. We set p in Eq. 11 to 0.5 to prune
the model. Other implementation details are based on specific
experiments and network structures, e.g., the value of β in
Eq. 10, the values of λ1, λ2 and λ3 in Eqs. 12 and 13. Dif-
ferent network structures are pruned in different manners. For
VGG-16, we use the proposed adversarial pruning scheme to
perform pruning in a layer-wise manner, and for other network
structures, we perform pruning in a block-wise manner. For a
fair comparison, we try to use the weights officially provided
by other pruning methods. For individual methods that do
not provide weights, we reimplement them using the officially
provided code, following their implementation details.

B. Results and Analysis on CIFAR-10

To verify the effectiveness of the proposed method, we first
conduct experiments on CIFAR-10. We use VGG-16, ResNet-
56 and ResNet-110 to compare the pruning results of our
adversarial pruning scheme and some state-of-the-art pruning
methods, such as L1 Norm [57], Network Slimming [18],
Hinge [58], HRank [17], CHIP [1], DCP [16], SFP [28],
FPGM [29], FilterSketch [60] and ABCPruner [59].

1) Results and Analysis on VGG-16: VGG-16 is a neu-
ral network with plain architecture, which has 16 layers.
Therefore, we adopt a layer-wise manner to prune VGG-16.
Specifically, according to the proposed adversarial pruning
scheme, we insert the proposed feature scoring module after

the ReLU activation of each convolutional layer in a layer-wise
manner to perform pruning. We take the values of λ1, λ2 and
λ3 in Eqs. 12 and 13 as 5e-2, 50 and 5e-2 respectively, and
take the value of β in Eq. 10 as 50 to prune VGG-16. The
pruning results are shown in Table I. Compared to L1 Norm
with the same baseline model, our method provides similar
parameters reduction and FLOPs reduction, with significantly
better performance in terms of standard accuracy (92.66% vs.
90.63%) and robustness (26.35% vs. 29.84% in mCE, 81.39%
vs. 52.87% in ℓ1 accuracy, 81.33% vs. 52.82% in ℓ2 accuracy,
36.25% vs 11.39% in ℓ∞ accuracy), which demonstrates the
superiority of our method over the magnitude-based method.
Compared with HRank and ABCPruner, our method yields
similar standard accuracy (92.66% vs. 92.34% by HRank and
93.08% by ABCPruner ), while achieving better mCE (26.35%
vs. 29.32% by HRank and 28.95% by ABCPruner) and attack
accuracy. Compared with Network Slimming, Hinge, CHIP
and FPGM, even though our method is slightly lower in
standard accuracy, it significantly improves mCE and attack
accuracy, especially achieving a significant enhancement in
attack accuracy. Hence, our method demonstrates its ability to
obtain a robust and compact model on a neural network with
a plain structure.

2) Results and Analysis on ResNet-56 and ResNet-110:
In contrast to VGG-16, ResNet-56 and ResNet-110 consist of
three stages. Moreover, each stage is composed of multiple
basic blocks, which contain two convolutional layers and
a shortcut connection. We prune ResNet-56 and ResNet-
110 in a block-wise manner. Since the existence of shortcut
connections requires that the input and output of basic blocks
must match in dimension, existing works usually only prune
the first convolutional layer in each basic block. In this paper,
we also follow this pruning paradigm, so the proposed feature
scoring module is inserted after the ReLU activation between
the first convolutional layer and the second convolutional
layer of each basic block to prune the first convolutional
layer. We take the values of λ1, λ2, λ3 and β as 1e-1, 30,
5e-2 and 50 respectively to prune ResNet-56 and ResNet-
110. The comparison of pruning results on ResNet-56 and
ResNet-110 is also shown in Table I. We first analyze the
experimental results on ResNet-56. Obviously, under similar
FLOPs reduction(49.53% vs. 49.77% by L1 Norm and 54.72%
by SFP) and parameters reduction (49.41% vs. 49.41% by
L1 Norm and 49.41% by Network Slimming) with L1 Norm,
Network Slimming and SFP, our method shows excellent per-
formance in standard accuracy (92.18% vs. 90.49%, 90.90%
and 91.87% by L1 Norm, Network Slimming and SFP, respec-
tively), mCE (28.11% vs. 31.71%, 30.14% and 35.41% by
L1 Norm, Network Slimming and SFP, respectively) and attack
accuracy. Besides, compared to other methods (e.g., Hinge,
HRank, DCP and FilterSketch, etc.) with similar parameters
reduction and FLOPs reduction, our method significantly
improves the robustness of the model against natural corrup-
tions and adversarial attacks, although our method leads to
lower but comparable standard accuracy. Next, we analyze
the experimental results on ResNet-110. Compared with some
methods with similar standard accuracy reduction (0.82% vs.
1.08%, 1.72% and 0.79% by L1 Norm, Network Slimming and
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TABLE I
PERFORMANCE COMPARISON OF PROPOSED ADVERSARIAL PRUNING SCHEME AGAINST SOME STATE-OF-THE-ART PRUNING METHODS. THE EXPER-

IMENT IS CONDUCTED USING VGG-16/RESNET-56/RESNET-110 ON CIFAR-10. “ACC.” DENOTES THE ACCURACY OF THE MODEL ON
CIFAR-10. “ACC.↓” DENOTES THE DROP IN ACCURACY OF THE MODEL ON CIFAR-10 BEFORE AND AFTER PRUNING. “PARAMS.↓”

AND “FLOPS↓” DENOTE PARAMETERS REDUCTION AND FLOPS REDUCTION BEFORE AND AFTER PRUNING, RESPECTIVELY. “*”
DENOTES THAT THE EXPERIMENT IS EXECUTED BY REIMPLEMENTING THE OFFICIALLY PROVIDED CODE. “A(B)” DENOTES

THE RESULT OF THE MODEL AFTER (BEFORE) PRUNING. THE BEST AND SECOND-BEST RESULTS ARE HIGHLIGHTED
IN BOLD AND UNDERLINE RESPECTIVELY

SFP, respectively), our method shows significant superiority in
improving robustness against natural corruptions (24.76% vs.
25.09%, 27.92% and 39.74% by L1 Norm, Network Slimming
and SFP, respectively) and adversarial attacks (e.g., 80.41%
vs. 55.57%, 51.83% and 52.96% in ℓ2 accuracy by L1 Norm,
Network Slimming and SFP, respectively), which proves that
our method is effective in mining the robust features. Similar to
what we have found with ResNet-56, since our pruned model
is adversarially trained, although our method shows lower but
competitive results in terms of standard accuracy compared to
some methods, our method outperforms in terms of mCE and
attack accuracy. For example, our method is slightly lower than
FilterSketch in standard accuracy (91.21% vs. 93.44%), but we
outperform FilterSketch in both mCE (24.76% vs. 29.31%)
and attack accuracy (80.45 % vs. 62.76 % in ℓ1 accuracy,
80.41 % vs. 62.68 % in ℓ2 accuracy, 36.73 % vs 10.75 %
in ℓ∞ accuracy). Therefore, our proposed adversarial pruning
scheme can also be applied to neural networks with residual
blocks.

Moreover, from Table I, we observe that except for our
method and CHIP (e.g., CHIP reduces mCE from 27.25%
to 26.57% on VGG-16 and from 28.92% to 28.77% on
ResNet-56), other methods show a decrease in performance in
terms of mCE. This again proves that most existing pruning
methods can harm the robustness of the model. This also
demonstrates that the pruned model obtained from CHIP by

measuring the channel independence of the feature maps has
better robustness against natural corruptions. There are some
methods (e.g., Network Slimming, CHIP, ABCPruner, FilterS-
ketch and FPGM) that can slightly improve the robustness
of the pruned model against adversarial attacks compared to
the original model. We analyze that this may be related to
the pruning method, the pruning ratio or pruning threshold,
network structure and datasets. For example, it may be due
to they introduce noise during pruning, which increases the
robustness of the model, or the lower complexity of the dataset
involved. This phenomenon will disappear with the increase
of the pruning ratio, which is proved in Fig. 4. Furthermore,
subsequent experimental results on ImageNet and complex
networks will further show that this phenomenon is difficult to
occur on complex datasets and networks. Besides, Khoury and
Hadfield-Menell [65] experimentally demonstrated that since
in general there is no single decision boundary that can be
optimally robust in all norms, there is no necessary connection
between robustness under different norm attacks. For example,
pruned models obtained by some methods exhibit a decrease
in ℓ1 accuracy and ℓ2 accuracy, but an improvement in ℓ∞
accuracy.

C. Results and Analysis on ImageNet

We conduct experiments for ResNet-18, ResNet-50 and
MobileNet-V2 on ImageNet to demonstrate the effectiveness
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TABLE II
PERFORMANCE COMPARISON OF PROPOSED ADVERSARIAL PRUNING SCHEME AGAINST SOME STATE-OF-THE-ART PRUNING METHODS. THE EXPER-

IMENT IS CONDUCTED USING RESNET-18/RESNET-50/MOBILENET-V2 ON IMAGENET. “TOP-1 ACC.” AND “TOP-5 ACC.” DENOTES TOP-1
ACCURACY AND TOP-5 ACCURACY OF THE MODEL ON IMAGENET, RESPECTIVELY. “TOP-1 ACC.↓” AND “TOP-5 ACC.↓” DENOTES THE

DROP IN TOP-1 ACCURACY AND TOP-5 ACCURACY OF THE MODEL ON IMAGENET BEFORE AND AFTER PRUNING, RESPECTIVELY.
“FLOPS↓” DENOTES FLOPS REDUCTION BEFORE AND AFTER PRUNING. “A(B)” DENOTES THE RESULT OF THE MODEL

AFTER (BEFORE) PRUNING. THE BEST AND SECOND-BEST RESULTS ARE HIGHLIGHTED IN BOLD AND UNDERLINE
RESPECTIVELY. “BASELINE” REFERS TO THE PRE-TRAINED WEIGHTS OFFICIALLY PROVIDED BY PYTORCH

Fig. 4. Robustness comparison of our proposed adversarial pruning scheme against L1 Norm [57], FilterSketch [60], CHIP [1] and HRank [17] under
different FLOPs reduction. All pruned models are obtained by pruning ResNet-56 on CIFAR-10. The (a) mCE, (b) ℓ1 accuracy, (c) ℓ2 accuracy and (d) ℓ∞
accuracy of the pruned ResNet-56 under different FLOPs reduction are reported, respectively. Best viewed in color.

of our proposed scheme on challenging datasets. We com-
pare the pruning results of our method with that of some
state-of-the-art pruning methods, such as SFP [28], FPGM
[29], ABCPruner [59], ManiDP [62], DCP [16], HRank [17],
MetaPruning [63], FilterSketch [60], CHIP [1] and Polar [64].
For a fair comparison, our method uses the pre-trained model
officially provided by PyTorch as the baseline model.

1) Results and Analysis on ResNet-18 and ResNet-50: We
first analyze the experimental results on ResNet-18. Similar
to ResNet-56, we also only prune the first convolutional layer
in each basic block to prune ResNet-18. We take the values
of λ1, λ2 and λ3 in Eqs. 12 and 13 as 1e-1, 60 and 5e-
2 respectively, and take the value of β in Eq. 10 as 50 to
prune ResNet-18. The pruning results are shown in Table II.
Compared with SFP, our method not only has lower Top-1
accuracy drop (2.79% vs. 3.18%) and Top-5 accuracy drop
(1.80% vs. 1.85%), but also outperforms in FLOPs reduction

(45.92% vs. 41.80%), mCE (89.32% vs. 89.71%) and attack
accuracy (43.37% vs. 9.81% in ℓ1 accuracy, 43.37% vs. 9.80%
in ℓ2 accuracy, 3.70% vs 2.05% in ℓ∞ accuracy). Under
similar FLOPs reduction, our method shows significant supe-
riority in both mCE and attack accuracy compared to FPGM,
ABCPruner, ManiDP and DCP, especially attack accuracy,
although it leads to slightly lower yet comparable standard
accuracy. To further verify the applicability of our method,
we next analyze the experimental results on ResNet-50. Unlike
ResNet-56 and ResNet-18, which are composed of multiple
basic blocks, ResNet-50 consists of multiple bottleneck blocks.
Each bottleneck block contains a 3×3 convolutional layer and
two 1×1 convolutional layers. Following the pruning paradigm
of existing methods for ResNet-50, we insert the proposed
feature scoring module into after the ReLU activations after the
first two convolutional layers of each bottleneck block to prune
ResNet-50. We set the value of λ2 in Eq. 13 to 100, and the
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Fig. 5. Performance comparison of our method with two adversarial
attack-based pruning methods at similar parameters reduction. Experiments
are conducted on CIFAR-10 and VGG-16. Left: Comparison with ADMM
[20] at similar parameters reduction (74.73% by Ours vs. 76.68% by ADMM).
Right: Comparison with HYDRA [21] at similar parameters reduction
(98.03% by Ours vs. 95.00% by HYDRA). Acc. is the standard accuracy.
Best viewed in color.

TABLE III
PERFORMANCE COMPARISON OF PROPOSED ADVERSARIAL PRUNING

SCHEME AGAINST SOME STATE-OF-THE-ART PRUNING METHODS.
THE EXPERIMENT IS CONDUCTED USING RESNET-50 ON
IMAGENET-200 AND IMAGENET-R. “FLOPS↓” DENOTES

FLOPS REDUCTION BEFORE AND AFTER PRUNING.
TOP-1 ACCURACY IS REPORTED. THE BEST AND

SECOND-BEST RESULTS ARE HIGHLIGHTED
IN BOLD AND UNDERLINE RESPECTIVELY.

“BASELINE” REFERS TO THE PRE-TRAINED
WEIGHTS OFFICIALLY PROVIDED

BY PYTORCH

other hyper-parameters to the same settings as when pruning
ResNet-18. From Table II, it can be observed that our method
outperforms ABCPruner in all aspects of robustness, including
mCE (81.24% vs.82.65%) and attack accuracy (49.12% vs.
8.33% in ℓ1 accuracy, 49.12% vs. 8.32% in ℓ2 accuracy,
4.63% vs 2.55% in ℓ∞ accuracy), while maintaining similar
performance in terms of Top-1 accuracy (73.87% vs.73.86%),
Top-5 accuracy (91.90% vs.91.69%), and FLOPs reduction
(53.39% vs.54.29%). Moreover, some methods (e.g., HRank
and DCP) slightly outperform our method in terms of mCE,
but are much lower than our method in terms of attack
accuracy, which indicates that our method can improve the
robustness of the pruned model across the board. Compared
with other methods (e.g., FPGM, MetaPruning and CHIP,
etc.), our method can significantly improve the robustness of
the pruned model when achieving comparable Top-1 accuracy
drop, Top-5 accuracy drop and FLOPs reduction. The experi-
mental results of pruning ResNet-50 on ImageNet demonstrate
that our scheme can be effectively applied to complex datasets
and network structures to obtain robust pruned models.

2) Results and Analysis on MobileNet-V2: To validate the
effectiveness of our proposed method on lightweight models,
we perform experiments to prune MobileNet-V2 on ImageNet.

TABLE IV
PERFORMANCE COMPARISON OF THE PROPOSED ADVERSARIAL

PRUNING SCHEME UNDER DIFFERENT NOISE SOURCES. THE
EXPERIMENT IS CONDUCTED USING VGG-16 AND RESNET-56 ON

CIFAR-10. “ATT.” AND “GEN.” DENOTE THE ADVERSARIAL
ATTACK SAMPLES AND GENERATED PERTURBATION

SAMPLES, RESPECTIVELY. THE BEST
AND SECOND-BEST RESULTS ARE HIGHLIGHTED

IN BOLD AND UNDERLINE RESPECTIVELY

TABLE V
PRUNING RESULTS OF RESNET-110 WITH DIFFERENT η ON CIFAR-10.

THE BEST AND SECOND-BEST RESULTS ARE HIGHLIGHTED IN BOLD
AND UNDERLINE RESPECTIVELY

TABLE VI
PRUNING RESULTS OF RESNET-56 WITH DIFFERENT NOISE DISTRIBU-

TION ON CIFAR-10. THE BEST AND SECOND-BEST RESULTS ARE
HIGHLIGHTED IN BOLD AND UNDERLINE RESPECTIVELY

MobileNet-V2 consists of multiple blocks, each consisting of
three convolutional layers: pointwise convolution, depthwise
convolution and pointwise convolution. To accommodate the
structure of depthwise convolution, we insert the proposed
feature scoring module after the first pointwise convolution,
and the generated robustness scores of the channels are shared
by the first pointwise convolution and depthwise convolution
to prune MobileNet-V2. We take the values of λ1, λ2, λ3 and
β as 5e-2, 70, 5e-2 and 50, respectively. The experimental
results are also shown in Table II. Compared with ManiDP, our
method outperforms in FLOPs reduction (43.85% vs.37.20%),
mCE (90.45% vs.95.31%) and attack accuracy (30.03% vs.
6.68% in ℓ1 accuracy, 30.01% vs. 6.68% in ℓ2 accuracy, 2.87%
vs 1.98% in ℓ∞ accuracy) while possessing slightly weaker
but comparable Top-1 accuracy (70.64% vs.71.42%). Since
our method has higher FLOPs reduction (43.85% vs.28.00%),
it is slightly weaker than Polar in Top-1 accuracy (70.64%
vs.71.80%), but the pruned model obtained by our method
has higher robustness, especially in terms of attack accuracy.
Hence, it demonstrates that our proposed adversarial pruning
scheme can be effectively applied to lightweight models.
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3) More Evaluation Results on ImageNet-R: To further
make the conclusions stronger, we conduct experiments on
ImageNet-R to compare with some state-of-the-art meth-
ods regarding out-of-distribution robustness. The experimental
results (in Table III) show that the pruned model obtained
using our scheme exhibits superior out-of-distribution robust-
ness.

To sum up, we show that the proposed adversarial pruning
scheme has an advantage: the resulting pruned model is more
robust compared to other channel pruning methods while
maintaining similar standard accuracy, parameters and FLOPs.

D. Comparison With Adversarial Attack-Based
Pruning Methods

To further demonstrate the superiority of our method,
we compare our method with the pruning method based on
adversarial attacks. We choose ADMM [20] and HYDRA [21],
two classic pruning methods based on adversarial attacks, for
comparison. ADMM is a pruning framework of concurrent
adversarial training and model compression based on the
Alternating Direction Method of Multipliers, which preserves
the adversarial robustness of the model while compressing it.
We implement ADMM under the scheme of filter pruning. The
experimental results are shown on the left side of Fig. 5, and
we can see that our method exhibits superior performance on
multiple metrics with similar parameters reduction. HYDRA
integrates robust training objective into the pruning technique
itself by transforming pruning into an optimization problem
to improve both benign and adversarial accuracy. We utilize
the weights provided by HYDRA to perform the evaluation.
The experimental results on the right side of Fig. 5 show that
our method outperforms HYDRA in multiple metrics, except
for ℓ∞ accuracy. These results demonstrate that the setting
adopted by our method to identify and preserve robust chan-
nels to obtain robust compact models is more effective than
adversarial attack-based pruning methods. Dynamically per-
turbed environments are usually a mixture of multi-distribution
shifts, so adversarial attack-based pruning methods struggle
to comprehensively improve the model’s ability to against
multiple types of perturbations, while our method improves
the robustness of the pruned model in a broader sense.
As can be seen from Table IV, using both adversarial attacks
and generated perturbations as noise sources has an overall
advantage over using only adversarial attacks.

E. Ablation Study

In this section, we conduct ablation studies about the pro-
posed adversarial pruning scheme. This section is composed
of five parts: sources of mixed noise samples, the effect of the
trade-off hyper-parameters, FLOPs reduction versus robust-
ness, contribution difference loss and compression control loss,
and visualization of the performance of the pruned model.

1) Sources of Mixed Noise Samples: In our work, two
different sources of mixed noise samples exist: multi-type
adversarial attacks and generated adversarial perturbations.
We want to explore the influence of different noise sources on
the effectiveness of the proposed adversarial pruning scheme.

TABLE VII
PRUNING RESULTS OF RESNET-56 WITH DIFFERENT β ON CIFAR-10.

THE BEST AND SECOND-BEST RESULTS ARE HIGHLIGHTED IN BOLD
AND UNDERLINE RESPECTIVELY

TABLE VIII
PRUNING RESULTS OF RESNET-56 WITH DIFFERENT λ1 , λ2 AND λ3

ON CIFAR-10. THE BEST AND SECOND-BEST RESULTS ARE
HIGHLIGHTED IN BOLD AND UNDERLINE RESPECTIVELY

Table IV compares the performance of our method on prun-
ing VGG-16 and ResNet-56 under different noise sources.
Here, since the parameters and FLOPs of the pruned model
are almost constant under different noise sources, they are
not reported. As can be seen, in general, using both noise
sources, the pruned model achieves excellent performance
in terms of both standard accuracy and robustness-related
metrics. Besides, it can be observed that the generated adver-
sarial perturbations are significantly effective in improving the
robustness of the pruned model against natural corruptions.
For example, with generated adversarial perturbations, pruned
VGG-16 and ResNet-56 reduce mCE by 3.51% (29.86%
without and 26.35% with generated adversarial perturbations)
and 1.86% (29.97% without and 28.11% with generated adver-
sarial perturbations), respectively. Moreover, we also observe
that using only multi-type adversarial attacks can significantly
improve the robustness of the pruned model against adversarial
attacks, but compromises the robustness against natural corrup-
tions. One possible reason is that the distributions of samples
obtained by adversarial attacks and by natural corruptions are
far apart, resulting in models trained on adversarial attacks
performing poorly on natural corruptions. This phenomenon
is more evident in pruned models.

Given that mixed noise samples consist of two types of
noise samples, we conducted experiments to investigate how
the ratio of these two types within mixed noise samples
affects the results (in Table V). The results show a gradual
increase in standard accuracy as η increases. This observation
implies that generated perturbation samples have a more
significant impact on standard accuracy than adversarial attack
samples. Furthermore, it becomes evident that beyond a value
of 30 for η, the improvements in several metrics are not
significant. Considering the higher time overhead associated
with obtaining adversarial attack samples through adversarial
attack training compared to generating perturbation samples,
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Fig. 6. Illustration of the change in the contribution score of intermediate
features during training when pruning ResNet-50 on ImageNet. The red and
blue lines represent the sum of contribution scores of intermediate features
from clean and noisy samples during training, respectively. Left: With the
contribution difference loss. Right: Without the contribution difference loss.
Best viewed in color.

Fig. 7. Comparison of the output channels before and after pruning. Left:
Pruning ResNet-56 on CIFAR-10. Right: Pruning ResNet-50 on ImageNet.
Best viewed in color.

we have set η to 30 in this work. Furthermore, we explore
the effect of employing different noise distributions as inputs
to the adversarial perturbation generator (in Table VI). Here,
all distributions are utilized in their standard forms. The
results indicate that the pruned model exhibits a more com-
prehensive advantage when utilizing the Gaussian distribution.
We attribute this to the favorable properties of the Gaussian
distribution, such as the central limit theorem, which allows it
to fit complex noise distributions better.

2) The Effect of The Trade-off Hyper-Parameters: To study
the effect of using different hyper-parameters, we prune
ResNet-56 on CIFAR-10 and evaluate the pruned model using
multiple metrics. We mainly study β in Eq. 10, λ1, λ2 and λ3
in Eq. 12 and Eq. 13. The experimental results are shown in
Table VII and Table VIII, respectively. From the perspective of
the comprehensive performance of the pruned model, we find
that the pruned model shows overall superiority in multiple
metrics when β = 50, λ1 = 1e− 1, λ2 = 30 and λ3 = 5e− 2.
We use the same way to select suitable hyper-parameters to fit
other network structures and data sets. Moreover, it is easily
observed that our method is insensitive to hyper-parameters,
which proves the reliability of our method.

3) FLOPs Reduction Versus Robustness: To study the
robustness of the pruned model under different FLOPs reduc-
tion, we evaluate the proposed method and some methods (e.g.,
L1 Norm, FilterSketch, CHIP and HRank). We prune ResNet-
56 on CIFAR-10 with different FLOPs reduction. We show
mCE, ℓ1 accuracy, ℓ2 accuracy and ℓ∞ accuracy in Fig. 4.
From Fig. 4 (a), as can be seen, compared with the original
model, the mCE of the pruned model may not get worse or
even perform better at a lower FLOPs reduction ratio, but
its mCE will increase rapidly as the FLOPs reduction ratio
increases. This phenomenon, which is not only manifested on

mCE, can also be observed on ℓ1 accuracy, ℓ2 accuracy and ℓ∞
accuracy (see Fig. 4 (b)-(d)). This phenomenon shows that a
small number of channels are removed, which has little impact
on the performance of the model, and when more channels are
removed, the robustness or representation ability of the model
is impaired dramatically, resulting in a large performance drop.
Besides, compared with other methods, the robustness of the
pruned model obtained by our method shows superiority at
high FLOPs reduction ratio.

4) Contribution Difference Loss and Compression Control
Loss: In our work, we propose a contribution difference loss
to align the contribution of two types of intermediate features
to the final prediction. Here, we choose to prune the first block
of ResNet-50 as an example to verify the effectiveness of this
contribution difference loss. During the training, we conducted
statistical analysis on the layers to be pruned, specifically
the sum of contribution scores (i.e., robustness scores) of
intermediate features from clean and noisy samples to the
final prediction, respectively. The statistical results are shown
in Fig. 6. From the left side of Fig. 6, we can see that
in the case of using the contribution difference loss, with
the progress of training, the sum of contribution scores from
both types not only decreases but also gets closer. However,
without using the contribution difference loss (see the right
side of Fig. 6), the sum of contribution scores from both
types is not only difficult to decrease, but also maintains a
large gap consistently. This demonstrates that the proposed
contribution difference loss not only aligns contribution scores,
but also makes contribution scores sparse. Besides, from the
distribution of the category scores in Fig. 8, we can also
see that the contribution difference loss allows the pruned
model to make reliable predictions in the face of perturbed
inputs by aligning the contribution of intermediate features
to the final prediction. Further, we visualize the number of
channels of ResNet-56 and ResNet-50 before and after pruning
to verify the effect of the proposed compression control loss.
The number of output channels before and after pruning for
each layer is shown in Fig. 7. From this figure, we can see
that the compression control loss can efficiently control the
compression ratio of each layer, which is beneficial to control
the compression ratio flexibly to meet the demand.

5) Visualization: We visualize the feature maps w.r.t. the
first block in the pruned ResNet-50 and the distribution of the
final category scores of the pruned ResNet-50 in Fig. 8. From
the results (Middle of Fig. 8), we observe that the pruned
model extracts similar and rich information on both clean and
perturbed images (e.g., snow and elastic transform). It proves
that the proposed adversarial pruning scheme can select the
channels with robustness for the network. Besides, we can
observe that the pruned ResNet-50 has similar distributions
of final category score when faced with clean and perturbed
samples (Right side of Fig. 8), especially for the larger clas-
sification score. This validates that our proposed adversarial
pruning scheme can yield robust pruned models, especially in
terms of the relative stability of Top-1 accuracy and Top-5
accuracy when facing perturbed inputs. In other words, the
pruned model obtained by our proposed scheme is able to
make reliable predictions in the face of perturbed inputs.
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Fig. 8. Visualization of intermediate feature maps and category scores. On the left are different input images, i.e., from top to bottom, clean image, image
with snow, and image with elastic transformation, respectively. In the middle is the feature map output from the first block of the pruned ResNet-50. On the
right side is the distribution of the category scores output from the FC layer of the pruned ResNet-50. The input images are from ImageNet and ImageNet-C,
respectively. Best viewed in color.

V. CONCLUSION

In this paper, we point out that the existing problem in
network pruning is that most pruning methods usually dam-
age the robustness of the model, and the pruned model is
difficult to perform well in the real world. To address this
issue, we propose an adversarial pruning scheme to compress
models to obtain robust pruned models. The scheme is simple
yet effective. Extensive experimental results on benchmark
datasets demonstrate that the pruned model obtained from the
proposed adversarial pruning scheme can make reliable pre-
dictions with lower computational overhead than the original
model in the face of perturbed inputs.

However, our proposed method also has some limitations.
On the one hand, our approach performs pruning in a
layer-wise or block-wise manner, which results in high pruning
costs. In our future research, we will try to solve this problem
with better methods. On the other hand, our method performs
pruning with the same pruning ratio per layer or per block,
which is not conducive to discovering a more appropriate final
structure. In future work, we will try to let the scheme explore
a flexible final structure given a desired global pruning rate.
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