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Abstract

We address the problem of facial motion retargeting that aims
to transfer facial motion from a 2D face image to 3D characters.
Existing methods often formulate this problem as a 3D face
reconstruction problem, which estimates the face attributes
such as face identity and expression from face images. How-
ever, due to the lack of ground-truth labels for both identity
and expression, most 3D-face reconstruction-based methods
fail to capture the facial identity and expression accurately.
As a result, these methods may not achieve promising per-
formance. To address this, we propose an identity-consistent
constraint to learn accurate identities by encouraging consis-
tent identity prediction across multiple frames. Based on a
more accurate identity, we are able to obtain a more accurate
facial expression. Moreover, we further propose an expression-
exclusive constraint to improve performance by avoiding the
co-occurrence of contradictory expression units (e.g., “brow
lower” vs. “brow raise”). Extensive experiments on facial mo-
tion retargeting and 3D face reconstruction tasks demonstrate
the superiority of the proposed method over existing meth-
ods. Our code and supplementary materials are available at
https://github.com/deepmo24/CPEM.

1 Introduction
Facial motion retargeting, which aims to transfer facial mo-
tion (i.e., facial expression and head pose) from monocular
RGB images to 3D targets, is a key technology for many
applications, such as virtual actors in movies and games, and
avatars in virtual reality and teleconferencing (Zollhöfer et al.
2018; Egger et al. 2020; Shi et al. 2020; Peihao et al. 2020).
Different from the face reenactment task (Ha et al. 2020; Yao
et al. 2021) that transfers facial motion from 2D images to 2D
images, the task of facial motion retargeting aims to transfer
facial motion from 2D images to 3D characters. However, this
task is very challenging since it requires capturing accurate
facial expressions from only 2D images. More critically, it is
difficult to train facial expression extraction models due to
the insufficiency of annotated data in real-world applications.

Most existing methods (Tuan Tran et al. 2017; Genova et al.
2018; Deng et al. 2019; Chaudhuri et al. 2020; Shang et al.
2020) attempt to learn facial expressions by solving a 3D face
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Figure 1: Limitations of existing 3D face reconstruction-
based methods for facial expression estimation. Since there
exists no independent supervision of identity and expres-
sion, existing methods may produce an incorrect identity
(i.e., small eye) with an incorrect expression (i.e., no eye nar-
rowing) in order to reconstruct a 3D face shape correctly.

reconstruction problem based on the 3D Morphable Model
(3DMM)(Blanz and Vetter 1999). Specifically, they predict
the coefficients of the face shape (i.e., face identity and ex-
pression) and combine these coefficients with the face model
to reconstruct a 3D face for training. In this way, they can
obtain the facial expression derived from the reconstructed
3D face. However, these methods may fail to capture facial
expressions accurately for the following reasons.

First, reconstructing accurate identity is necessary for cap-
turing accurate expressions, which, however, is very difficult
due to the lack of ground-truth labels for the face identity
and expression. Specifically, the 3D face mainly consists of
two parts: identity and expression. Most existing 3D face
reconstruction methods mainly focus on whether the recon-
structed face shape is accurate or not. However, in practice,
inaccurate identity and expression can also generate a sat-
isfied face shape (see Figure 1), which can not satisfy the
requirements of the retargeting task, i.e., accurate expres-
sion. Thus, besides obtaining an accurate 3D face shape, how
to predict an accurate identity is also vital for the desire of
accurate expression. To this end, some methods attempt to en-
force identity consistency across multiple images of the same
person. FML (Tewari et al. 2019) and Personalized (Chaud-
huri et al. 2020) used average pooling to aggregate the iden-
tity features from multiple images. RingNet (Sanyal et al.
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2019) enforced the distance between the same identities to be
smaller than that of different identities by a margin. However,
their constraints are too slack to enforce the consistency of
predicted identities and thus result in poor estimation perfor-
mance of expressions. Therefore, how to promote consistent
and accurate identity prediction is still an open question.

Second, contradictory facial expression units (e.g., “brow
lower” vs. “brow raise”) exist that are not expected to appear
simultaneously in one face. However, due to the lack of direct
supervision on these expression units, it is hard to avoid the
co-occurrence of contradictory expression units, which cre-
ates difficulty in learning accurate facial expressions. Existing
methods (Chaudhuri, Vesdapunt, and Wang 2019; Chaudhuri
et al. 2020) only employ an l1 loss to enforce sparse ex-
pression coefficients, and thus cannot effectively avoid the
co-occurrence of contradictory expression units.

To address the above issues, we propose a Consistent Pa-
rameter Estimation Model (CPEM) that incorporates two
well-designed constraints for accurate expression extraction.
First, considering that a good identity is an essential condition
for precisely capturing expression, we propose an identity-
consistent constraint. Specifically, we explicitly enforce all
predicted identity coefficients of the same person across mul-
tiple frames to approximate the average predicted identity,
which helps to learn a consistent and accurate identity that
is robust to different expressions. Therefore, accurate iden-
tity estimation promotes accurate expression estimation. Fur-
thermore, we propose an expression-exclusive constraint to
suppress the co-occurrence of contradictory expression units.
Specifically, we first define a contradictory expression pair
set from the expression attributes with prior knowledge. Then,
to suppress the contradictory expression units, we explicitly
deactivate the undesired expression unit to zero according to
a carefully designed suppressing rule. This further facilitates
a more accurate expression estimation.

We summarize the contributions of this paper as follows.
• To better learn accurate expressions, we turn our prob-

lem into a problem of learning accurate identity. To this
end, we propose a simple yet effective identity-consistent
constraint for learning consistent and accurate identities
across multiple frames from the same person, which sig-
nificantly promotes expression estimation performance.

• To avoid the co-occurrence of contradictory expression
units, we propose an expression-exclusive constraint to
suppress contradictory expression units from appearing
together to achieve better expression estimation.

• Extensive experiments on facial motion retargeting and
3D face reconstruction benchmarks show our method
brings significant improvement in reconstructing accurate
expressions compared with state-of-the-art methods.

2 Related Work
3D Face Reconstruction. Recent 3D face reconstruction
methods mostly use deep neural networks to estimate the
3DMM coefficients. Some methods (Richardson, Sela, and
Kimmel 2016; Dou, Shah, and Kakadiaris 2017; Guo et al.
2018) use real 3D scans to generate synthetic rendered im-
ages as supervision. Others (Feng et al. 2018; Yi et al. 2019;

Cao et al. 2019; Lang et al. 2019; Guo et al. 2020) propose
different network architectures and use 3DMM coefficients
or 3D face labels from a fitted 3D face dataset (Zhu et al.
2016). To overcome the limitation of the lacking realistic
3D face data, Genova et al. (2018) trained a regression net-
work using only unlabeled photographs with a differentiable
renderer. To exploit complementary information from differ-
ent images, Deng et al. (2019) performed multi-image face
reconstruction by shape aggregation. RingNet (Sanyal et al.
2019) enforced the shape consistency of multiple images by
requiring the distance between matched pairs to be smaller
than unmatched pairs by a margin. Tewari et al. (2019, 2021)
proposed a multi-frame video-based framework to learn a
face model from data and then perform 3D face reconstruc-
tion. Moreover, multi-view methods (Wu et al. 2019; Shang
et al. 2020) exploit multi-view consistency to improve the 3D
face reconstruction performance, especially under large pose
situations. However, all these methods mainly focus on the
final reconstructed 3D face but ignore the accurate estimation
of expressions. In contrast, we focus on capturing accurate
facial expressions for effective facial motion retargeting.

Face Tracking and Retargeting. Early optimization-
based methods (Weise et al. 2011; Bouaziz, Wang, and Pauly
2013; Li et al. 2013) usually optimize the tracking parameters
of the face model and adaptively correct the expression blend-
shapes using depth scans. Afterwards, some methods (Cao
et al. 2013a; Cao, Hou, and Zhou 2014; Cao et al. 2015)
learned 3D facial shape regressors and optimized the parame-
ters of the expression blendshapes only with 2D video frames,
which required either calibration for each user or a specifi-
cally designed expression model. Recently, learning-based
methods (Chaudhuri, Vesdapunt, and Wang 2019; Chaud-
huri et al. 2020) trained a deep neural network to estimate
the parameters of expression blendshapes and conduct facial
motion retargeting. Chaudhuri et al. (Chaudhuri, Vesdapunt,
and Wang 2019) proposed a multi-task framework to jointly
learn to predict the face bounding box and the 3DMM pa-
rameters. To recover the facial expression details, Chaudhuri
et al. (2020) proposed to jointly learn a personalized face
blendshape model and estimate the tracking parameters in
a multi-frame framework. To better learn the blendshape
model, they aggregated the identity features from multiple
images by average pooling. However, these methods may
not learn a consistent and accurate identity and neglect the
co-occurrence of the contradictory expression units, which
results in inaccurate expression estimation.

3 Preliminaries
In this paper, we aim to learn accurate facial expressions from
input images for facial motion retargeting. To achieve this, we
resort to 3D face reconstruction which estimates face identity,
expression and so on from images. For convenience, we
introduce the 3D face model, illumination model and camera
model used for 3D face reconstruction in the following.
3D Face Model. We use the linear 3DMM representation
model as our 3D face model in the paper, in which the face
shape S ∈ RV×3and the face texture T ∈ RV×3 of the 3D
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Figure 2: An overview of our framework. We use the Parameter Estimation Network (PE-Net) to estimate the 3DMM coefficients
from multiple video frames of a person in the training. To promote accurate expression estimation, we use novel identity-
consistent constraint Lidc and expression-exclusive constraint Lexp as well as other 3D face reconstrcution losses Lrec to train
our model. During the inference, we only take the expression and head pose coefficients for facial motion retargeting.

face are represented by two affine models:

S = S+αB>id + βD>exp, T = T+ δB>tex, (1)

where S and T are the average face shape and texture re-
spectively, and V is the number of vertices of the 3D face.
Bid and Btex denote the PCA bases of identity and tex-
ture respectively, while Dexp denotes the expression model.
α, β and δ are the corresponding coefficient vectors of the
face model. We use the popular 2009 Basel Face Model
(BFM) (Paysan et al. 2009) for S,T,Bid and Btex and ex-
clude the ear and neck region. Moreover, we use the delta
blendshapes (i.e., displacements from the rest pose) taken
from the FaceWarehouse database (Cao et al. 2013b) as
the expression model Dexp, since these blendshapes have
a clear semantic meaning for describing facial expressions.
The model contains 46 expression units as described in Facial
Action Coding System (Friesen and Ekman 1978), in which
each expression unit has a value from 0 to 1, representing
the expression intensity from weak to strong. Note that the
delta blendshapes have been transferred to the topology of the
BFM model using deformation transfer (Sumner et al. 2004).
As a result, we have α ∈ R80, β ∈ R46 and δ ∈ R80.
Illumination Model. To model the scene illumination, we
assume a Lambertian surface for the 3D face and approximate
the scene illumination with Spherical Harmonics (SH) (Ra-
mamoorthi and Hanrahan 2001). Specifically, using the face
texture and surface normal as input, the scene light can be
calculated via the SH basis functions with the corresponding
SH coefficient γ. We choose the first three bands of SH basis
functions following (Deng et al. 2019), such that γ ∈ R9.
Camera Model. To project the reconstructed 3D face into the
2D image plane, we use the perspective camera model with
an empirically-selected focal length. Therefore, the pose p
of the 3D face is represented by an Euler rotation r ∈ SO(3)

and translation τ ∈ R3.
Last, we concatenate all the required 3DMM coefficients

into a single vector x = (α,β, δ,γ,p) that is used to recon-
struct the 3D face and render it back to the image plane with
the differentiable renderer (Lassner and Zollhofer 2021). In
particular, the expression coefficient β and head pose coeffi-
cient p are used for facial motion retargeting.

4 Consistent Parameter Estimation Model
We focus on solving the problem that captures the facial ex-
pressions accurately from only 2D images for facial motion
retargeting. To this end, we use the 3D face reconstruction
framework which inputs a face image and outputs the recon-
structed 3D face shape with a combination of face identity
and expression. However, existing methods often fail to esti-
mate the face identity and expression accurately due to the
lack of ground-truth labels for both of them. In this paper,
considering that reconstructing an accurate identity is nec-
essary for estimating accurate expression, we propose an
identity-consistent constraint to explicitly enforce a consis-
tent identity coefficient prediction across multiple frames. In
this way, we are able to learn a consistent and accurate iden-
tity for the same person, which will in turn improve accurate
expression estimation. To extract more accurate expressions,
we further propose an expression-exclusive constraint to regu-
larize our model to avoid predicting contradictory expression
coefficients simultaneously. An overview of our framework
is shown in Figure 2.

Formally, given T frames of the same person as inputs,
we first use the parameter estimation network to estimate T
groups of 3DMM coefficients. Then, we combine the pre-
dicted coefficients with the 3DMM prior model to reconstruct
the 3D faces that are then rendered back to the image plane
with the differentiable renderer. Finally, we train our parame-
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ter estimation network via the proposed identity-consistent
and expression-exclusive constraints as well as several losses
for 3D face reconstruction in a self-supervised manner. The
loss function is given as

L =
T∑
t=1

Ltrec + λidcLtidc + λexpLtexp, (2)

where Ltrec, Ltidc, and Ltexp are the self-supervised losses for
3D face reconstruction and the proposed identity-consistent
and expression-exclusive losses, respectively. λidc and λexp
are the hyper-parameters of the corresponding losses. For
simplicity, we omit the superscript t in the following sections.

During the inference, our model takes one image as input
each time and predicts the 3DMM coefficients, where the
expression coefficient β and head pose coefficient p are used
for facial motion retargeting to any 3D target with expression
blendshapes consistent with ours, as shown in Figure 2.

4.1 Identity-consistent Constraint
Due to the lack of ground-truth labels for the face identity
and expression, it is hard to train a 3D face reconstruction
model that can estimate the face identity and expression
accurately. To learn more accurate facial expressions for the
retargeting purpose, we turn our problem to learning accurate
identity. Motivated by the fact that the identity of the same
person across multiple frames should be consistent, we seek
to enforce consistent prediction of identity coefficients across
multiple frames of a person. However, it is non-trivial for
the model to learn consistent identity representation for the
same person without ground-truth identity labels. To address
this, we propose to use the average of the predicted identity
coefficients for T frames as the pseudo identity label α to
supervise the identity coefficient output of each frame. 1

Specifically, we enforce all output identity coefficients to
approximate the pseudo identity label during training. For-
mally, our identity-consistent constraint in the t-th frame
is defined as the mean square error between the predicted
identity coefficient αt and the pseudo identity label α:

Ltidc =
∥∥αt −α

∥∥2 . (3)

Note that the identity label is constantly updated during train-
ing but as a fixed label to supervise the identity outputs of the
parameter estimation network in the backpropagation of each
batch. In this way, our model gradually learns consistent and
accurate identity estimation in the self-supervised training,
which in turn improves accurate expression estimation.

Intuitively, the average identity coefficient from multiple
frames of the same person is more accurate than the spe-
cific identity coefficient of each frame, since it reduces the
variation caused by different expressions from each frame.
Therefore, through explicitly approximating the predicted
identities to the average predicted identity, our model fully
exploits the identity information from multiple frames to es-
timate consistent and accurate identity from different images
of a person even though the expressions are various.

1Some discussion on different choices of the pseudo identity
label is put in the supplementary materials.

4.2 Expression-exclusive Constraint
Our expression model is made up of 46 expression units
(i.e., blendshapes), in which several expression units are con-
tradictory such as “brow lower” and “brow raise”. However,
in the training process, there is no direct supervision of the
expression coefficients to avoid the co-occurrence of these
contradictory expression units, which brings difficulties in
learning accurate expressions. To address this, we propose
an expression-exclusive constraint to guide the model to sup-
press those expression units that should not appear. Specif-
ically, we first define a contradictory expression pair set as
O from the expression blendshape model with prior knowl-
edge, where each pair (i, j) ∈ O is the subscript of β. Here,
βi and βj are the expression coefficients of a contradictory
expression unit pair 2. Assuming that for two contradictory
expression units, the unit with the larger value is dominant
and should be kept, we instantiate the expression-exclusive
constraint as the expression-exclusive loss as follows:

Lexp=
∑

(i,j)∈O

∥∥∥∥1{βi > βj

}
· βj

∥∥∥∥2 + ∥∥∥∥1{βj > βi

}
· βi

∥∥∥∥2 ,
(4)

where 1{·} is the indicator function, in which 1{a} = 1 if a
is true and 1{a} = 0 if a is false.

In this way, our CPEM learns to deactivate the expression
units that should not appear and thus promote a more accurate
prediction of the expression coefficients. Essentially, we take
a “winner-take-all” strategy for the contradictory expression
units, which is reasonable if the model has good expression
prediction performance. In practice, we can easily meet this
requirement by adding the expression-exclusive loss after
training the model for enough iterations.

4.3 Multi-frame Loss for 3D Face Reconstruction
We train the proposed CPEM in a self-supervised manner
without using 3D supervision. In addition to the two con-
straints we proposed in the above sections, we also include
several loss functions for 3D face reconstruction. They are
defined as follows:

Lrec =λphoLpho + λperLper + λlmLlm
+ λregLreg + λspLsp,

(5)

where Lpho,Lper,Llm, (Lreg,Lsp) are photometric loss,
perception loss, landmark loss and regularization loss, re-
spectively. Following previous approaches (Deng et al. 2019;
Shang et al. 2020), the hyper-parameters λpho, λper, λlm,
λreg and λsp are set to 1.9, 0.2, 0.1, 1e-4 and 0.1, respec-
tively, in all our experiments.
Photometric Loss. We use the l2,1 loss (Thies et al. 2016) to
compute the photometric discrepancy between the t-th input
frame I and the rendered frame Î. The loss is given by

Lpho =

∑
i∈MAi ·

∥∥∥Ii − Îi

∥∥∥
2∑

i∈MAi
, (6)

2The detailed information of the defined contradictory expres-
sion pair set is described in the supplementary materials.
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where i denotes the pixel index, andM is the reprojected face
region generated by the differentiable renderer. A is a face
mask with a value of 1 in the face skin region, and a value
of 0 elsewhere obtained by an existing face segmentation
method (Yu et al. 2018), which can reduce the error brought
by occlusion such as eyeglasses.
Perception Loss. To produce more realistic face shapes, we
also use a pretrained face recognition network (Cao et al.
2018) to employ a perception loss during training (Deng
et al. 2019; Genova et al. 2018). Specifically, we extract the
deep features of the input image I and the rendered image
Î, and compute the cosine distance to measure the similarity
between the two features. The loss is defined as

Lper = 1− 〈f(I), f(Î)〉
‖f(I)‖ · ‖f(Î)‖

, (7)

where f(·) denotes the deep features extracted from the face
recognition network and 〈·, ·〉 denotes vector inner product.
Landmark Loss. The landmark loss measures the difference
between ground-truth 2D facial landmarks Q and the corre-
sponding landmarks Q̂ in the reconstructed 3D face, where
Q̂ are already projected into the image plane by the learned
camera model. The loss is defined as

Llm =

n∑
i=1

ωi ·
∥∥∥Qi − Q̂i

∥∥∥2 , (8)

where n denotes the number of landmarks, i denotes the
landmark index and ωi is the landmark weight, which we set
to 1 for the face contour and 10 for the inner face region to
reduce the impact of contour landmarks. To acquire more
accurate facial landmarks as ground truth, we use a com-
bination of landmarks detected from a 3D face alignment
method (Bulat and Tzimiropoulos 2017) and a 2D face align-
ment method (King 2009) (see the supplementary material).
Regularization Loss. To prevent face shape and texture de-
generation, we add a commonly-used regularization loss on
the estimated 3DMM coefficients to enforce a prior distribu-
tion towards the mean face. The loss is given as

Lreg = λα ‖α‖2 + λδ ‖δ‖2 , (9)

Following Deng et al. (2019), the hyper-parameters are em-
pirically set to λα = 1.0 and λδ = 1.7e−3. Besides, we also
impose a l1 loss Lsp to enforce sparse expression coefficients
following Chaudhuri et al. (2020).
Differences with FML and RingNet. FML (Tewari et al.
2019) used the average pooling (Avgpool) strategy to
aggregate the identities across multiple frames, while
RingNet (Sanyal et al. 2019) enforced the distance between
the same identities to be smaller than that of different identi-
ties by a margin. However, these two strategies often failed
to predict consistent identity for the same person, as shown
in Figure 5. In contrast, our proposed identity-consistent
constraint explicitly enforces consistent identity prediction
during training, which is able to learn more consistent and ac-
curate identity, thereby facilitating more accurate expression
estimation. Furthermore, we propose an expression-exclusive
constraint to extract more accurate expressions.

5 Experiments
5.1 Experimental Settings
Implementation Details. We implement our method based
on PyTorch (Paszke et al. 2019) and use the differentiable ren-
derer from Pytorch3d (Lassner and Zollhofer 2021). We use
an Adam optimizer (Kingma and Ba 2015) with a learning
rate of 1e-4. We train our model for 300K iterations with a
batch size of 8 and an input size of 224×224, and only use the
expression-exclusive loss in the last 100K iterations. We use
ResNet50 (He et al. 2016) as the backbone of the parameter
estimation network. 3 We change the output dimension of the
last fully connected layer to output the 3DMM coefficients
and use the sigmoid function on the expression branch. By
default, we set T = 4, λidc = 1000, and λexp = 10.
Datasets. We train our model on three publicly available
datasets: VoxCeleb2 (Joon Son et al. 2018), 300W-LP (Zhu
et al. 2016) and FEAFA (Yan et al. 2019). VoxCeleb2 has
more than 140K videos of about 6K identities in the training
set, and about 5K videos in the testing set. 300W-LP contains
synthesized large-pose face images from 300W (Sagonas
et al. 2013). We consider the set of images of the same person
with different poses as a video. FEAFA is a facial expression
dataset containing 123 facial videos of 122 identities with
about 100K frames. To measure the expression accuracy,
we collect an expression test set from FEAFA. More details
about this test set are put in the supplementary.
Baselines. We compare our method with MS-SFN (Chaud-
huri et al. 2019), Personalized (Chaudhuri et al. 2020) and
RingNet (Sanyal et al. 2019) on the facial motion retargeting
task. We reimplement the first two methods since the code
and models are unavailable. For a fair comparison, we use
the same training datasets and keep the same settings as ours
in these methods. We also compare our method with several
state-of-the-art 3D face reconstruction methods on 3D face
reconstruction and 2D face alignment tasks. Specifically, we
compare with the following baseline methods: 3DDFA (Zhu
et al. 2016), PRNet (Feng et al. 2018), RingNet (Sanyal et al.
2019), Deng et al. (2019), MS-SFN (Chaudhuri et al. 2019)
and 3DDFA-V2 (Guo et al. 2020).

5.2 Qualitative Results
Facial Motion Retargeting. We evaluate the effectiveness of
our method on FEAFA (Yan et al. 2019) test set as shown in
Figure 3. Benefited from the proposed identity-consistent and
expression-exclusive constraints, our method achieves the
most accurate facial motion retargeting results compared with
baseline methods. Specifically, the facial motion retargeted by
MS-SFN (Chaudhuri et al. 2019) yields both inaccurate head
pose and facial expressions. Through enforcing the identity
consistency with different strategies, RingNet (Sanyal et al.
2019) and Personalized (Chaudhuri et al. 2020) estimate a
little more accurate expressions. However, they still predict
inconsistent identity thus the retargeting results are worse
than ours (e.g., smaller lip corner pull, smaller nose wrinkle,
and smaller mouth open).

3More results with a light-weight MobileNet-V2 (Sandler et al.
2018) backbone are put in the supplementary materials.
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Method Eye Brow Brow Mouth Lip Lip Kiss Nose Lip Corner Lip Corner AvgClose Lower Raise Open Suck R/D Wrinkle Pull Stretch

MS-SFN 0.204 0.585 0.358 0.430 0.396 0.381 0.687 0.909 0.509 0.502 0.496
RingNet 0.276 0.214 0.303 0.234 0.592 0.260 0.441 0.767 0.423 0.390 0.390

Personalized 0.148 0.552 0.269 0.159 0.596 0.265 0.445 0.805 0.413 0.323 0.397

Ours (w/o Lidc + Lexp) 0.336 0.273 0.492 0.325 0.829 0.334 0.573 0.896 0.467 0.430 0.495
Ours (w/ Lidc) 0.137 0.371 0.077 0.158 0.385 0.231 0.236 0.484 0.319 0.293 0.269

Ours (w/ Lidc + Lexp) 0.127 0.341 0.108 0.104 0.445 0.241 0.201 0.379 0.227 0.271 0.244

Table 1: Comparisons of facial motion retargeting accuracy (measured by Mean Absolute Error) on FEAFA test set with different
methods. The lower error means the method performs better for capturing expressions.

Personalized OursMS-SFN OursMS-SFNTarget
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Figure 3: Facial motion retargeting comparison with different methods. We show the source person with different expressions in
the first row. The second and third rows present the retargeting results(i.e., transferring facial expression and head pose) to a
target human and a target 3D character, respectively. We highlight some retargeting details using the box in red dash line.

Input 3DDFA-V2 Deng et al. RingNet MS-SFN Ours PRNet 

Figure 4: Visual comparisons on 3D face reconstruction with
state-of-the-art methods.

3D Face Reconstruction. We show visual comparison re-
sults of reconstructing 3D face geometry on AFLW2000-3D
dataset (Zhu et al. 2016) in Figure 4. Specifically, we evaluate
the proposed CPEM on several images in the conditions of
occlusion, extreme light and large expressions. The results
show that our method reconstructs comparable 3D face geom-
etry compared with other methods in most cases. Moreover,
when dealing with large expressions (e.g., the first and last

rows in Figure 4), our CPEM even obtains better 3D face
reconstruction performance than other baseline methods.

5.3 Quantitative Results
Facial Motion Retargeting. We quantitatively evaluate the
facial motion retargeting performance regarding the Mean
Absolute Error (MAE) of expression units on the collected
FEAFA expression test set. As shown in Table 1, our method
achieves the lowest MAE and outperforms existing meth-
ods by a large margin. This means our method estimates
more accurate expressions by learning consistent and ac-
curate identities, as well as avoiding the co-occurrence of
contradictory expression units. In contrast, MS-SFN (Chaud-
huri et al. 2019), RingNet (Sanyal et al. 2019) and Person-
alized (Chaudhuri et al. 2020) obtain much higher MAEs
because they predict inconsistent and inaccurate identities,
which hampers accurate expression estimation.
2D Face Alignment. We evaluate the face tracking perfor-
mance of our method on the AFLW2000-3D dataset (Zhu
et al. 2016) using the Normalized Mean Error (NME) as
the evaluation metric. Specifically, the NME metric is de-
fined as the average Euclidean distance between the 68 pre-
dicted and ground truth 2D landmarks with the bounding box
size as the normalization factor. The results in Table 2 show
that our method achieves the best results in the situation of
small and medium yaw angles, while performs slightly worse
than 3DDFA-v2 (Guo et al. 2020) at large yaw angles. How-
ever, 3DDFA-v2 needs additional 3D supervised information,
while our model is only trained with 2D supervision.
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Method AFLW2000-3D(68pts)

[0,30] [30,60] [60,90] Mean

3DDFA 3.10 4.17 5.49 4.25
PRNet 2.76 3.56 4.67 3.66

Deng et al. 3.36 5.12 7.88 5.45
MS-SFN 3.43 4.20 6.27 4.63

3DDFA-v2 2.89 3.57 4.49 3.65
CPEM(ours) 2.68 3.48 4.75 3.64

Table 2: Comparisons of NME(%) for 68 landmarks on
AFLW2000-3D dataset (with 3 groups based on yaw angles).

Method MICC Florence FW
Cooperative Indoor Outdoor

RingNet 2.09±0.48 2.13±0.46 2.10±0.47 2.47±0.32
Deng et al. 2.98±1.00 2.22±0.55 2.06±0.48 2.15±0.32
MS-SFN 2.37±0.59 2.52±0.66 2.99±0.90 2.20±0.45

3DDFA-v2 1.94±0.52 2.10±0.50 1.98±0.49 2.26±0.43
CPEM(ours) 2.08±0.59 2.09±0.54 2.02±0.54 2.03±0.33

Table 3: Geometric reconstruction error(mm) on MICC Flo-
rence and Facewarehouse(FW) dataset. Bold number for the
best result and underline number for the second-best result.

3D Face Reconstruction. We quantitatively evaluate the ge-
ometric reconstruction capability of our method on the MICC
Florence dataset (Bagdanov et al. 2011) and the FaceWare-
house dataset (Cao et al. 2013b). Following Genova et al.
(2018), we calculate the point-to-plane root mean square
error with the average shape for each video in different sce-
narios, and average the results. Moreover, we use 9 identities
in FaceWarehouse dataset to calculate the point-to-point root
mean square error following Deng et al. (2019). The results
in Table 3 show that our method achieves promising results
on both datasets. Specifically, our method achieves the best
results in both indoor scenarios of the MICC Florence and
FaceWarehouse datasets due to its superiority in capturing
accurate expressions.

5.4 Ablation Study
To evaluate the effectiveness of the proposed two constraints
(i.e., identity-consistent and expression-exclusive constraints)
and the sensitivity of hyper-parameters, we conduct a series
of ablation studies on FEAFA expression test set.
Effectiveness of Proposed Constraints. To investigate the
effectiveness of the proposed identity-consistent constraint
Lidc and expression-exclusive constraint Lexp, we compare
the quantitative facial motion retargeting results of the models
optimized with and without these two losses. In Table 1, both
proposed constraints contribute to promising performance.
Specifically, the identity-consistent constraint creates a large
improvement in facial motion retargeting performance, which
demonstrates the effectiveness of identity-consistent con-
straint. Combining these two constraints achieves slight im-
provement on average compared to using Lidc alone. There-
fore, Lexp further helps to capture accurate expressions.

We further evaluate the prediction stability of identity coef-
ficients on the test set of Voxceleb2. Specifically, we calculate

Figure 5: Comparisons of the identity consistency in terms
of MAE of the identity coefficients between each subsequent
frame and the first frame on the test set of Voxceleb2.

Parameter λidc λexp

1 100 1000 10000 1 10 100

Avg 0.491 0.286 0.244 0.279 0.260 0.244 0.255

Table 4: Effect of the hyper-parameters λidc and λexp on the
facial motion retargeting in terms of MAE.

MAE of identity coefficients between each subsequent frame
and the first frame on a video, and average the results of 40
videos. From Figure 5, the average pooling strategy (Chaud-
huri et al. 2020) and RingNet (Sanyal et al. 2019) fail to
predict stable identities for the same person. Moreover, with-
out the identity-consistent constraint (Vanilla), a high MAE
shows that the model usually predicts inconsistent identities
for the same person. In contrast, we obtain a very low MAE
with the proposed identity-consistent constraint, resulting in
more accurate expression estimation (see Table 1).
Sensitivity of Hyper-parameters. In this section, We eval-
uate the sensitivity of two hyper-parameters, i.e., λidc and
λexp. As shown in Table 4, our model achieves the best per-
formance when setting λidc=1000 and λexp=10. When the
hyper-parameter of λidc is as small as 1, the facial motion
retargeting accuracy is greatly impaired compared to the best
result (0.244 vs. 0.491). As λidc increases from 1 to 1000,
the performance is stably improved, which further demon-
strates the effectiveness of the proposed identity-consistent
constraint. For λexp, the performance is less sensitive to the
hyper-parameter of λexp than that of λidc.

6 Conclusion
In this paper, we have proposed an effective approach to ac-
curately capture facial expressions to improve facial motion
retargeting performance. To accurately capture facial expres-
sions, we proposed a simple yet effective identity-consistent
constraint to explicitly enforce a consistent identity predic-
tion. Moreover, we proposed an expression-exclusive con-
straint to avoid the co-occurrence of contradictory expression
units, which further improves the expression estimation per-
formance. Extensive experiments on facial motion retarget-
ing and 3D face reconstruction benchmarks demonstrate the
superiority of the proposed method in estimating accurate
expressions over previous state-of-the-art approaches.
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