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Abstract
Deep neural networks (DNNs) have achieved success in many machine learning tasks. 
However, how to interpret DNNs is still an open problem. In particular, how do hidden 
layers behave is not clearly understood. In this paper, relying on a teacher-student para-
digm, we seek to understand the layer behaviors of DNNs by “monitoring” the distribu-
tion evolution for both across-layer and single-layer along the depth and training epochs, 
respectively. Relying on the optimal transport theory, we employ the Wasserstein distance 
(W-distance) to measure the divergence between the layer distribution and the target dis-
tribution. Theoretically, we prove that (i) the W-distance between the distribution of any 
layer and the target distribution tends to decrease along the depth; (ii) for a specific layer, 
the W-distance between the distribution in an iteration and the target distribution tends 
to decrease along training epochs; (iii) a deeper layer, however, is not always better than 
a shallower layer. Relying on these properties, we are able to propose an early-exit infer-
ence method to improve the performance of the multi-label classification. Moreover, our 
results help to analyze the stability of layer distributions and explain why auxiliary losses 
are helpful in training DNNs. Extensive experiments justify our theoretical findings.
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1 Introduction

Deep neural networks (DNNs) have been successfully applied in computer vision, such as 
image classification (Zou et al. 2020; Wang et al. 2020; Ye et al. 2020; Fang et al. 2020; 
Guo et al. 2020), image generation (Brock et al. 2019; Sun et al. 2019; Hussain et al. 2020; 
Li et al. 2020) and speech recognition (Yeh et al. 2019; Chen et al. 2019a). Despite their 
success, the internal mechanism of deep neural networks is still a black box. In particular, 
understanding what hidden layers do remains persistently elusive. To answer this question, 
we seek to understand the across-layer and single-layer behaviors.

Most existing methods study the across-layer behaviors by investigating the classifica-
tion performance of the intermediate layers and the last layer, and thus are limited to ana-
lyze the change of distributions. Recently, some methods only focus on final predictions of 
a DNN in different tasks (He et al. 2016). Due to end-to-end training, the interpretation of 
the behaviors of each intermediate layer in a DNN is still not clear. In addition, some works 
aim to produce a single prediction and observe the classification performance of each layer 
(Papernot and McDaniel 2018; Szegedy et al. 2014; Kaya et al. 2019). For example, Mon-
tavon et al. (2011) analyze the layer-wise evolution of DNNs based on kernel methods and 
empirically observe that the prediction error decreases layer after layer in a DNN. Alain 
and Bengio (2016) show that the classification error decreases monotonically along the 
depth of a DNN. Unfortunately, such monotonic property has no theoretical justifications 
to support these experimental findings. Moreover, these methods are hard to explore the 
across-layer behaviors by monitoring how distributions change across different layers. To 
interpret DNNs, it is important and necessary to investigate the across-layer behaviors of a 
DNN.

For the single-layer behaviors, most existing methods visualize the distribution infor-
mation experimentally, which, however, lack of theoretical justifications to analyze the 
distribution stability. Recently, the distribution stability of DNNs attracts extensive atten-
tion in many machine learning tasks (Santurkar et al. 2018; Sonoda and Murata 2019). For 
example, some studies aim to show the training behaviors of one layer by visualizing the 
mean and variance of features (Santurkar et al. 2018). Unfortunately, these visualizations 
are subjective and lack the necessary theoretical justification. To address this, the trans-
port analysis (Sonoda and Murata 2019) uses a denoising Autoencoder to transport mass to 
decrease the Shannon entropy of the data distribution. However, this method only consid-
ers a specific network, and thus is limited and inflexible to analyze a general case of DNNs. 
Moreover, these methods are hard to analyze the single-layer behavior and the distribution 
stability of layers. To address this, it is important to develop a new analytical method to 
interpret the distribution stability of layers.

In this paper, we apply the optimal transport theory to analyze the across-layer and 
single-layer behaviors. Specifically, we exploit the Wasserstein distance (W-distance) to 
measure the difference between the distribution of any layer and the target distribution. By 
monitoring the change of the W-distance, we are able to study both across-layer and single-
layer behaviors.

Our contributions are summarized as follows.

• We analyze the across-layer behaviors and prove that the W-distance between the dis-
tribution of any layer and the target distribution decreases along the depth of a DNN. 
This means that the layers of the network can express the target distribution progres-
sively.
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• We analyze the single-layer behaviors and prove that for a specific layer, the W-distance 
between the distribution in an iteration and the target distribution decreases across 
training iterations when introducing a loss in the layer.

• We provide experimental and theoretical justifications for these findings. Moreover, 
these findings help to develop an early-exit inference method to improve the perfor-
mance of the multi-label classification. The proposed analytical framework provides a 
different view of understanding and interpreting a DNN.

2  Related work

Although deep neural networks (DNNs) have achieved good performance in many machine 
learning tasks, the internal mechanism of DNNs is still unknown. Existing methods seek to 
understand DNNs from two perspectives: across-layer analysis and single-layer analysis.

2.1  Across‑layer analysis

Previous studies on across-layer analysis try to visualize features in every layer of a DNN 
to help humans to understand. For example, Zeiler and Fergus (2014) present a important 
technique to visualize the intermediate features in different layers of a pre-trained classi-
fier. This technique helps to understand why a DNN model performs so well or how to 
improve the DNN model. Moreover, Yosinski et  al. (2015) understand deep neural net-
works through two deep visualization tools. Specifically, the first tool visualizes the activa-
tions on each layer when processing an image, and helps to build valuable intuitions about 
how the neural networks work. The second tool visualizes features at each layer via the 
regularized optimization in the image space.

In addition, Bau et al. (2017) evaluate how hidden units align a set of semantic concepts 
to quantify the interpretability of latent representations of a DNN. Dosovitskiy and Brox 
(2016) invert image representations with up-convolutional networks for studying image 
representations. Based on optimizing an objective function with gradient descent, Mahen-
dran and Vedaldi (2015) propose a framework to invert shallow and deep representations 
(such as HOG (Dalal and Triggs 2005) and SIFT (Lowe 1999)) more accurately than recent 
methods, and is applicable to DNNs. Moreover, in several layers of a DNN, this method 
shows photographically accurate information about an image. These information have dif-
ferent degrees of geometric and photometric invariance. Zhang et  al. (2018) reveal the 
knowledge hierarchy hidden inside a pre-trained DNN by learning an explanatory graph. 
Moreover, Zhang et al. (2019) learn a decision tree to clarify the specific reason for each 
semantic prediction of a DNN. However, these methods understand a DNN from the fea-
ture level, and thus are hard to monitor the distribution propagation across different layers.

On the other hand, some studies try to interpret the across-layer behaviors of deep neu-
ral networks by exploiting the prediction error of the intermediate layers in DNNs. For 
example, Montavon et al. (2011) use kernel-based tools to analyze the cross-layer behav-
iors and find that the prediction error decreases along the depth of the DNN. Raghu et al. 
(2017) propose a SVCCA tool and find that a DNN converges to final representations from 
the bottom up. However, these methods use additional tools to understand DNNs. In this 
paper, we aim to theoretically and empirically analyze the cross-layer behaviors of DNNs 
by label distribution mapping without any tools.
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Moreover, some works (Tian 2017; Goldt et al. 2020) exploit the Teacher-Student (TS) 
paradigm to analyze the across-layer behaviors. Specifically, Tian (2017) uses the TS 
scheme to show that the population gradient on the weight for a two-layered network has 
an analytical formula and provides some theoretical analysis of critical points and conver-
gence behaviors. Goldt et  al. (2020) study the relations between the final generalization 
error of the student and the network size in a two-layered network. Unlike these methods, 
we exploit the Teacher-Student paradigm to analyze the behaviors in both the across-layer 
and the single-layer for multi-layer networks.

2.2  Single‑layer analysis

Many single-layer analysis methods analyze the classification accuracy of the output lay-
ers to understand a DNN. For example, DSN (Lee et al. 2015) minimizes the classification 
error and makes the learning process of hidden layers direct and transparent. This method 
focuses on the transparency of the intermediate layers to the overall classification and con-
siders the robustness of learned features in the hidden layers.

Similarly, Kaya et  al. (2019) introduce internal classifiers into off-the-shelf DNNs to 
understand the overthinking phenomenon of neural networks by studying how the predic-
tion changes along the depth of a DNN. Gupta and Schütze (2018) explain recurrent neu-
ral networks by understanding the layer-wise semantic accumulation behaviors. Santurkar 
et  al. (2018) visualize the mean and variance of features to show the behaviors of one 
layer to understand DNNs. In addition, Sonoda and Murata (2019) investigate the feature 
map inside a DNN by tracking the transport map, and prove that a deep Gaussian DAE 
transports mass to decrease the Shannon entropy of the data distribution. However, these 
methods try to explain this phenomenon with experimental evidence but lack of theoretical 
guarantees.

To address this, existing studies apply the information theory in a DNN to improve 
interpretability. For example, the information bottleneck method (Tishby and Zaslavsky 
2015) quantifies the performance of DNNs using the mutual information, and shows that 
the representations at any layer are related to the structural phase transitions along the 
information curve. Saxe et al. (2018) argue three claims of the information bottleneck the-
ory of DNNs, and exploit some phenomena to support their argument by analytical results 
and simulation. In addition, the variational information bottleneck (Bang et al. 2019) is a 
system-agnostic interpretable method to consider both briefness and comprehensiveness to 
explain DNNs more efficiently. However, these methods analyze the information entropy 
of every hidden layer. How to analyze the change of distribution in a specific layer through 
different iterations remains an open question. In this paper, we aim to theoretically and 
experimentally interpret deep neural networks by analyzing the single-layer behaviors.

3  Notation and preliminaries

Throughout the paper, we use the following notations. Specifically, we use bold lower-case 
letters (e.g., � ) to denote vectors, and bold upper-case letters (e.g., � ) to denote matrices. 
We denote the transpose of a vector (e.g., �� ) or matrix (e.g., �� ) by the superscript � . For 
two matrices � and � of the same size, the inner-product can be defined as ⟨�,�⟩=tr(���) , 
where tr(⋅) is the trace of a matrix. Let � be an identity matrix, �=[1,… , 1]� be a vector 
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where every element is equal to one, and let [n]={0, 1,… , n} . Let supp (�) be the support 
of a distribution � (Lee et al. 2017).

3.1  Optimal transport

The optimal transport problem originally seeks to measure the difference between two 
probability distributions on a given metric space. In this paper, we will exploit the optimal 
transport theory (Villani 2008) to study the layer behaviors in a DNN. Specifically, since 
the Wasserstein distance is an effective metric to establish a geometric tool for effectively 
comparing probability distributions, it helps to narrow the gap between the interpretability 
of DNNs and human understanding. Formally, the Wasserstein distance can be defined as 
follows.

Definition 1 (Wasserstein distance (Villani 2008)) Given a target distribution � and a pre-
dicted distribution �̂  , and the cost matrix � defined as C�,��= dp

K
(�, ��) with the metric 

dK , where �, �′ are label tags, then the Wasserstein distance seeks to find a transportation 
matrix � by transporting a mass �̂  to �,

where Π(�̂,�) is the set of couplings and defined as

In practice, the cost matrix can be constructed by word2vec (Mikolov et al. 2013). Note 
that Problem (1) is non-convex, leading to an intractable optimization problem (Genevay 
et al. 2018). To address this, we apply the entropic Wasserstein distance (Cuturi 2013) as 
follows,

where H(�)=−
∑

�,�� T�,�� (log(T�,�� )−1).
Note that Problem (3) is a convex optimization problem (Peyré and Cuturi 2019), and 

thus it can be solved efficiently by some gradient methods, e.g., the Sinkhorn algorithm 
(Knight 2008).

3.2  Label distribution

To explore the across-layer and single-layer behaviors, we consider learning a label dis-
tribution in every layer. Such a label distribution can be obtained by optimizing the multi-
label classification problem (Geng 2016). In this problem, a predicted distribution or a 
target distribution can be modeled as a label distribution (i.e., probability distribution), 
indicating the relative importance of each label involved in the description of an instance, 
as shown in Fig. 2. Note that the sum of the target distribution or the predicted distribution 
is equal to one.

Specifically, given training samples S={(�i, �i)}Ni=1 , we seek to learn a model 
f from data space X  into the label space Y . In Fig.  1 (a), for L-layered neural net-
works, we denote f̃0∶l=f̃l◦⋯◦f̃0, l≤L as the output of the l-th layers, then the label 

(1)W(�̂,�) = inf
�∈Π(�̂,�)

⟨�,�⟩,

(2)Π(�̂,�)={�∈ℝK×K
+

∶ ��=�̂,���=�}.

(3)W
�
�(�̂,�) ∶= inf

�∈Π(�̂,�)
⟨�,�⟩ − 1

�
H(�),
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distribution mapping can be defined as fl∶=hl◦f̃0∶l , where hl is a probability function 
(e.g., FC+softmax (Frogner et al. 2015)). Here, f̃l, l∈[L] have different input and output 
domains. In contrast, all fl, l∈[L] have the same input domains and the same output 
domains, because they feed the same input and then output a label distribution to be 
close to the target distribution. Our goal is to learn a model fl to let the predicted dis-
tribution �̂l to be close to the target distribution � . Then, we optimize the empirical 
risk as follows:

where �l=fl#(�0), l≤L , and fl# is a pushforward operator of the original distribution �0 (Vil-
lani 2008), and d(⋅, ⋅) is some distribution divergence, such as a cross-entropy (CE) loss 
and the Wasserstein loss (Frogner et al. 2015). In practice, the label distribution is obtained 
by optimizing Problem 4. In general, the changes of label distributions across different lay-
ers or iterations can reflect the layer behaviors.

(4)�̂l = arg min�S[d(�l,�)],

(a) (b)

Fig. 1  Demonstration of the forward propagation of a deep neural network. a Network forward propaga-
tion: Given an input � , we fix the l-th hidden layer and only optimize the corresponding classifier to output 
label distributions �̂t

l
 at time t. Their network architecture can be referred to Supplementary materials. b 

Label distribution behaviors: they contain the across-layer behaviors and the single-layer behaviors. For the 
across-layer behaviors, the label distribution �̂t

0
 of the first layer propagates to �̂t

L
 of the L-th layer such that 

it can be close to the target distribution � . For the single-layer behaviors, the label distribution �̂0

l
 propa-

gates to �̂t

l
 during the epochs in one layer

(a) (b)

Fig. 2  An example of the label distribution. Taking five labels as an example, a target distribution or a 
predicted distribution can be modeled as a label distribution. Here, we build the target distribution using 
ground-truth labels and consider the output of DNNs as the predicted distribution. Note that the sum of the 
label distribution is equal to 1
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4  Teacher‑student analysis for layer behaviors

It is well known that the neural network has a strong ability to fit an unknown function 
or distribution. However, the fitting behaviors of the neural network have not been well 
studied. To resolve this, we start from the perspective of whether the internal layers 
have sufficient fitting ability as that of the whole network. To this end, we use the final 
outputs to represent the fitting ability of the whole network (namely the teacher). In this 
sense, it is natural for us to obtain the distribution of intermediate layers by training a 
student network under the teacher’s guidance.

Moreover, the Teacher-Student (TS) framework has a good theoretical basis to help 
us analyze and understand neural networks (Tian 2017; Goldt et al. 2020). Note that if 
we directly use the ground truth labels to represent the target distribution, the analysis 
would be very difficult. Fortunately, under TS, we can represent the target distribution 
via a certain function (i.e., the teacher), and thus exploit some mathematical proper-
ties (e.g., Lipschitz continuous) for further analyses. Specifically, we can transform the 
problem of learning an internal classifier to fit the ground-truth into a problem of learn-
ing a student to fit the teacher. Relying on this framework, we are able to analyze the 
across-layer behaviors and the single-layer behaviors. Specifically, we learn a neural 
network to approximate the ground-truth (i.e., the target distribution). Here, the ground-
truth can be represented by the output of a teacher network (T-net) [52]. Then, the out-
put of a student network (S-net) can be close to the output of the T-net (See Fig. 3).

To measure the difference between the output of the S-net and the output of the 
T-net, we may apply some distribution distance, such as Jensen-Shannon (JS) diver-
gence, Kullback-Leibler (KL) divergence and Chebyshev distance. However, these 
metrics neglect to consider the geometric structure of the probability distributions. For 
example, when two distributions overlap slightly, JS-divergence becomes a constant and 
KL-divergence becomes meaningless. Moreover, the Chebyshev distance is �∞ distance, 
which is unsuitable to measure the distance between two distributions. On the contrary, 
the Wasserstein distance is an alternative metric to establish a geometric tool for effec-
tively comparing probability distributions. Furthermore, the Wasserstein distance is 
more suitable to conduct our theoretical analyses which are based on the optimal trans-
port. In this paper, we propose to apply the Wasserstein distance to measure the diver-
gence to analyze how the layer distributions change across different layers or iterations 
in a specific layer, as shown in Fig. 1b.

Fig. 3  The teacher-student paradigm for analyzing layer behaviors of DNNs. This paradigm contains a 
teacher network (T-net) and a student network (S-net). a For the across-layer behavior, we study the ability 
of the student network to express distributions of the teacher network. b For the single-layer behavior, we 
investigate the change of the Wasserstein distance between the distributions of the student network and the 
teacher network
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4.1  Across‑layer behavior analysis

Relying on the teacher-student analysis framework, we propose to analyze the across-
layer behaviors. To this end, we measure the across-layer Wasserstein distance between 
the distribution �̂l in the l-th layer and the target distribution � , i.e., W(�̂l,�) . The 
detailed algorithms of the across-layer W-distance can be referred to Algorithm 1.

By using the Wasserstein distance, we are able to analyze the ability of each layer of 
the S-net to express the distribution of the T-net, as shown Fig. 3a. Based on the defini-
tion of the Barron function (See Supplementary materials), we derive an approximation 
bound for finitely deep neural networks. Specifically, given a T-net composited by L 
Barron functions, we derive an approximation bound w.r.t.  the across-layer Wasserstein 
distance as follows.

Theorem 1 (Across-layer Wasserstein distance approximation) Given an input distribution 
�0 and a function �i , and let Ll= log(l)+1 , if supp (𝜇0)⊂K0 and 𝜑i(Ki−1)⊆ Ki, 1≤i≤l , �i is 
an 

(
Ll−1−1∕Ll

)
-Lipschitz and is a Barron function, in other words, 

�1∈ΩK0
(C0),�i∈ΩKi−1+sBmi−1

(Ci) , then there exists a network f with l hidden layers with ⌈
4C2

l
mlL

2
l−1

L2
l
∕�2

⌉
 neurons in the i-th layer,

where l ≤ L , 𝜖, 𝛿, s>0 and Dl is the diameter of the set Kl.

Proof See supplementary materials for the proof.   ◻

In Theorem 1, we provide an error bound when using a neural network with l hid-
den layers to approximate L Barron functions. The error bound decreases with the 
increasing of layers under certain conditions. In this sense, deeper layers have a smaller 
approximation errors than shallow layers. In other words, the W-distance between the 
distribution of any layer and the target distribution has a decreasing tendency along with 
the depth.

In addition, deep layers are not always better than shallow layers for some specific 
samples. Such samples are often classified correctly in the shallow layer rather than the 
deep layer when the diameter Dl is very large for this set of samples. Hence, shallow 
layers can behave better than deep layers for these kinds of samples.

(5)W(�̂l,�) ≤
�2

L2
l

��
2Cl

√
ml + Dl

�2 �
s2

+ 1
�
,
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4.2  Single‑layer behavior analysis

Based on the teacher-student framework, we can also analyze the single-layer behaviors. 
To this end, we measure the single-layer Wasserstein distance between the distribution �̂t

l
 

in a training iteration and the target distribution � , i.e., W(�̂t
l
,�) . The detailed algorithms 

of the single-layer W-distance can be referred to Algorithm 2.
By using the Wasserstein distance, we measure the difference between the output of the 

intermediate layer of the S-net and the output of the T-net, as shown in Fig. 3b. Specifi-
cally, given a T-net f ′ and training dataset S , we first learn an S-net f that minimizes the 
following training loss as follows,

By learning the S-net f and the corresponding distribution �t in a specific layer, we explore 
how the distribution propagates in one layer as follows.

Theorem 2 At the initialization t=0 , the pushforward f#�t with Gaussian distribution satis-
fies the backward heat equation (Sonoda and Murata 2019), then the gradient of the Was-
serstein distance satisfies

where grad(⋅) is a gradient operator (Sonoda and Murata 2019).

Proof See supplementary materials for the proof.   ◻

Note that Theorems 1 and 2 do not constrain that the predicted distributions �̂�l must 
be derived from a linear classifier. In other words, it can be any differentiable probability 
functions. From Theorem 2, by introducing an target distribution � to supervise the corre-
sponding distribution �t in a specific layer during training, the single-layer W-distance can 
be decreased along the negative gradient. It means that the label distribution can be close 
to the target distribution across training iterations. However, the stability of distribution in 
a specific shallow layer is difficult to be guaranteed even with Batch Normalization. We 
provide experimental results in Sect. 7.1 and the proof in Supplementary materials.

In practice, we employ an auxiliary loss (i.e., Eq. (6)) in a specific layer as the super-
vision. In contrast, the distribution stability in each layer is hard to be guaranteed when 

(6)min
f

��∼S

[
‖‖f (�) − f �(�)‖‖

2
]
.

(7)�t�
t=0(�) = −grad

(
W(�t,�)

)
,
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we do not take an auxiliary loss as the supervision information. These results help to 
analyze the stability of layer distributions and explain why auxiliary losses are helpful 
in training DNNs. We provide experimental justifications in Sect. 6.

5  Early‑exit inference for multi‑label classification

From Theorem 1, we theoretically prove that the W-distance decreases along with the 
depth of DNNs. In other words, we always get the smallest W-distance in the last layer, 
suggesting that it can be more likely to make correct predictions. In practice, however, 
some intermediate layers are sufficiently representative to make correct predictions and 
more layers may even make wrong predictions. In this sense, it is possible and reason-
able to improve the performance via an early-exit strategy, which attempts to early exit 
the correct predictions in the intermediate layers instead of the last layer.

Recently, existing methods (Kaya et  al. 2019; Scardapane et  al. 2020) apply confi-
dence-based early-exit method in the multi-class classification problem. However, these 
methods are not suitable for the multi-label classification because they consider single 
probability only. To address this, we propose a new early-exit method for the multi-label 
classification problem. An intuitive understanding of the early-exit method is shown in 
Fig. 4.

Fig. 4  An intuitive understanding of the early-exit method. Given a deep neural network and classifiers of 
intermediate layers, we obtain label distributions in every layer. When the early-exit condition is satisfied 
(See the red box), i.e., the ratio �

l
 exceeds the ratio � , then the label distribution can be exited as the final 

output prediction (Color figure online)
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Given a sample � and a pre-trained DNN, the auxiliary classifier outputs a probability 
vector �l in the l-th intermediate layer, as shown in Fig.  4. To early-exit the sample in 
the multi-label classification setting, we first need to estimate the number of the predicted 
labels, then we determine whether these labels satisfy some exit conditions. To this end, 
for each sample, we calculate the numbers (denoted as nl and ml ) of probability values in �l 
exceeding thresholds s1 and s2 , respectively. Here, nl is the number of the predicted labels, 
and ml is the number of these labels with the high confidence in �l . Then, we define a high-
confidence ratio for the early-exit strategy, i.e.,

The detailed algorithm of the early-exit reference method is shown in Algorithm 3. In prac-
tice, we use a sigmoid function in the last layer of the pre-trained classifiers. Then, we set 
the threshold s1 as 0.5 and search the threshold s2 in [0.5, 1]. Here, we choose 0.5 since it is 
the boundary of the sigmoid function. Moreover, a sample can be early-exited when �l ≥ � , 
where � is selected in [0.5, 1] since we consider the exited sample is with a high confi-
dence. For every threshold s2 and ratio � , we calculate the classification accuracy with the 
predicted probability vectors on testing data. Last, we choose the best threshold s2 and ratio 
� with the highest classification accuracy. The experiments for different parameters s2 and � 
on the test set are conducted in Table 4 in Sect. 7.1.

6  Experiment

In this section, we conduct several experiments to analyze the across-layer and single-layer 
behaviors. Specifically, we verify that the across-layer and single-layer Wasserstein dis-
tances decrease along the depth and training iterations, respectively. Furthermore, we find 
that the Wasserstein distance of a deeper layer is not always lower than that of a shallower 
layer for some samples. Therefore, we propose an early-exit inference method to exit these 
samples in the intermediate layers of DNNs to improve the classification performance.

6.1  Implementation details

All experiments are implemented on PyTorch. In the training, we use an SGD optimizer 
with an initial learning rate of 0.01. The learning rate decays by a factor of 10 for every 
40 epochs. The momentum and weight decay are set to 0.9 and 10−4 , respectively. We 

(8)�l =
ml

nl
, l ≤ L.
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pre-train models (including ResNet-18 (He et al. 2016) and VGG-16 (Simonyan and Zis-
serman 2015)) on the ImageNet dataset (Deng et al. 2009) for 100 epochs with a batch size 
of 128. Then, we freeze the model parameters and train the internal classifiers (i.e., the net-
work hl in Fig. 1a) for 100 epochs. Each internal classifier (i.e., S-net) contains a fully con-
nected layer and a sigmoid function. We train the network using the binary cross entropy 
loss. We explore the across-layer and single-layer distribution propagation on the training 
set. In addition, we set �=0.01 in Eq. (3) to achieve balanced results. For simplicity, we use 
ResNet to represent the ResNet-18 model and VGG to represent the VGG-16 model in the 
main paper. The detailed partitions of ResNet and VGG can be referred to Supplementary 
materials.

6.2  Datasets and evaluation metrics

6.2.1  Datasets

We conduct experiments on two benchmark multi-label classification datasets, including 
VOC2007 (VOC) (Everingham et al. 2010) and MS-COCO (COCO) (Maas et al. 2013). 
These datasets are widely used in the multi-label classification task (Shi et al. 2018; Wang 
et al. 2016; Durand et al. 2019).

• VOC2007 (Everingham et al. 2010) has 9,963 images from 20 object categories, which 
are divided into training, validation and test sets.

• MS-COCO (Maas et al. 2013) contains 82,783 images as the training set and 40,504 
images as the validation set. The objects are categorized into 80 classes with approxi-
mately 2.9 object labels per image.

6.2.2  Evaluation metrics

For the evaluation metrics, we use the classification accuracy, average per-class F1 (CF1), 
average overall F1 (OF1) and mean average precision (mAP) as the evaluation metrics. 
These metrics are widely used to evaluate the performance of the multi-label classification 
task (Chen et al. 2019c, b).

• Classification accuracy: the number of correctly classified samples divided by the total 
number of samples.

• Average per-class F1: the average of the F1 score of each class. Here, the F1 score can 
be interpreted as a weighted average of the precision and recall.

• Average overall F1 (OF1): the average of the F1 score of overall class.
• Mean average precision (mAP): the mean of the average precision (AP) scores for all 

classes. Here, average precision is defined to find the area under the precision-recall 
curve above.

6.3  Results on across‑layer distribution propagation

In this experiment, we investigate the expression ability of each layer for ResNet and VGG. 
Such the expression ability can be measured by the Wasserstein distance (W-distance) 
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between the label distribution of a layer and the target distribution. In Fig. 5, deep layers of 
both ResNet and VGG have a smaller W-distance than shallow layers. It verifies Theorem 1 
that deep layers have smaller approximation error than shallow layers. Therefore, deep lay-
ers have a better expression ability than shallow layers. In addition, the W-distance tends 
to decrease across different layers, i.e., the W-distance decreases from shallow layers to 
deep layers. Note that shallow layers have a similar ability to express the target distribu-
tion since they have similar values of the W-distance. When approaching the last layer, the 
W-distance drops to a very small value. This implies that a sufficient number of layers are 
able to express the target distribution.

Next, we investigate how the label distribution propagates across layers to understand 
the learning process from layer to layer in a DNN. Specifically, we pre-train ResNet and 
VGG on the VOC and COCO datasets. Without loss of generality, we randomly choose a 
training sample in the VOC and COCO datasets, respectively. Then, we normalize the pre-
diction of the classifier as the probability distribution (i.e., the sum of the label prediction 
probabilities of a sample is one). From Fig. 6, the label distribution of one sample propa-
gates from the first layer to the last layer. In the shallow layers, the label distribution is far 
from the target distribution; but it can be close to the target distribution in deep layers. In 
contrast to the decreasing tendency in Fig. 5, the label distribution of one sample may not 
approach the target distribution progressively. For example, in the first row of Fig. 6, the 

Fig. 5  Distribution distance across different layers for ResNet and VGG networks, including W-distance, 
C-distance, KL-divergence and JS-divergence. All experiments are conducted with three trials. More details 
of layers can be referred to supplementary materials

Fig. 6  Distribution propagation across different layers for different networks. The first four columns are 
learned label distributions in different layers, and the last column is the target label distribution
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probability of the 10-th class is large in the 0-th layer, but decreases by the third layer. It 
means that existing networks are hard to control the layer distribution of every sample to be 
close to the target distribution. One possible reason is that there may exist many redundant 
information in the learning process.

6.4  Results on single‑layer distribution propagation

In this experiment, we investigate how distributions propagate when training DNNs. Spe-
cifically, we consider using the Wasserstein distance to measure the distance between the 
distribution in an iteration and the target distribution. The single-layer Wasserstein distance 
and the distribution propagation are shown in Figs. 7 and 8, respectively.

From Fig. 7, the distributions in the first few layers of ResNet and VGG often fluctuate 
significantly due to the limited discriminative power of very shallow layers. For the inter-
mediate layers (e.g., the 4-th layer of ResNet), the W-distance is steady at a larger value 
and the changes of distributions tend to be stable since the layers have certain expression 
ability and nearby the last layer with the supervision. When approaching the last layer, the 
supervision is sufficient to decrease the W-distance. This justify Theorem 2,which says the 
Wasserstein distance can be decreased with sufficient supervision.

From Fig.  8, we show the label distribution of one sample propagates from the first 
epoch to the last epoch. At the early training stage, the label distribution is far from the tar-
get distribution. At the latter learning stage, the label distribution can be close to the target 
distribution.

Fig. 7  The Wasserstein distance between the distribution in an epoch and the target distribution across dif-
ferent training epochs for different networks. We choose the 1, 4, 9-th layer for ResNet and the 1, 6, 13-layer 
for VGG

Fig. 8  Distribution propagation across different training epochs of ResNet-18 and VGG-16
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6.5  Performance on a single sample

In this experiment, we investigate the contribution of every sample in different layers. In 
practice, a deep neural network constructs more complex features progressively throughout 
the layers (Lee et al. 2011). An interesting question arises: does each sample behave the 
same? To answer this question, we first define the concept of sample difficulty in terms 
of the W-distance. As shown in Fig. 9, samples can be divided into three categories: easy, 
hard and confused. The intuition for training or testing samples is that:

• Easy samples should have a small W-distance (near zero) in the first few layers, i.e., 
they should be classified correctly with high confidence in a shallow layer.

• Hard samples should have a large W-distance in a deeper layer, i.e., they cannot be 
resolved at all, or can be resolved only near the last layer.

• Confused samples have a small W-distance in shallow layers and a large W-distance in 
deep layers. It means that although these samples are classified correctly in a shallow 
layer, they are still misclassified in the last layer.

Compared with the easy and hard samples, the confused samples have a greater effect on 
the classification performance in practice. Next, we investigate the number of the confused 
samples in each layer of ResNet. At the 0-th layer, 1.17% confused samples are correctly 
classified. Ideally, if we can learn a good classifier to early exit these confused samples, the 
cumulative accuracy of ResNet-18 is 70.44% on the VOC dataset. Considering the diffi-
culty of samples would help to interpret the training of models and design the training loss, 
which can improve the performance.

6.6  Results of early‑exit inference method

Next, we discuss how to exploit the behaviors of different layers to improve the perfor-
mance of the classifier. In practice, we observe that in deep neural networks, some sam-
ples are correctly classified in intermediate layers but misclassified in the last layer. From 
Tables 1 and 2, the accuracy of ResNet and VGG on VOC are 64.48% and 68.96%, respec-
tively. In other words, 35.52% and 31.04% of the samples are misclassified on the test set 
of VOC for ResNet and VGG, respectively. For these samples, 5.96% and 7.76% of the 
samples are correctly classified in all intermediate layers of ResNet and VGG, respectively. 

Fig. 9  Demonstration of properties on easy, hard and confused samples. Here, we randomly choose train-
ing samples as intuitive examples. Each block has three subgraphs, including an input image, the predicted 
label distribution and the W-distance across different layers. For each block, we show the predicted label 
distribution corresponding to the red point on the bottom row (Color figure online)
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(The phenomenon on COCO is similar to VOC.) Based on this phenomenon, we can 
improve performance by early exiting such confused samples. Different from the strategy 
of SDN (Kaya et al. 2019), performing early-exit for the multi-label classification is very 
challenging. Therefore, we design a new early-exit inference method for the multi-label 
prediction. In Table 3, our proposed method consistently outperforms the baseline meth-
ods. It means that the confused samples can be early exited in the intermediate layers.   

7  Further experiments

In this section, we first provide the ablation study for the parameters in our early-exit infer-
ence method. Then we apply the Wasserstein distance to study the stability of the distribu-
tion propagation in a specific layer. Last, we further exploit the across-layer behaviors with 
other distribution distances.

7.1  Ablation study for different hyper‑parameters s
2
 and �

In this experiment, we show how the two parameters s2 and � affect the performance of 
our early-exit inference method on the test set by numerical experiment in Table 4. From 
Table 4, the accuracy of the model increases from 64.48% to 66.01%. In other words, the 
confused samples, which are correctly classified in intermediate layers but misclassified in 
the layer, can be early exited in the intermediate layers.

7.2  Stability of distribution propagation in one layer

Recently, the training stability of a deep neural network attracts extensive attention in the 
field of machine learning (Bjorck et al. 2018; Wu et al. 2019; Chen et al. 2020). To address 
this, one can use the Batch Normalization (BN) (Ioffe and Szegedy 2015) to stabilize the 
distributions of the hidden layers during training. The popular belief is that the success of 
the Batch Normalization stems from controlling the stability of distribution during train-
ing. To justify this, we provide theoretical and empirical justifications for the distribution 
stability in one layer. Specifically, we apply the Wasserstein distance to measure the sta-
bility between the distribution in an iteration and the target distribution across different 
training iterations in a specific layer. The conventional understanding of BN suggests that 
the W-distance should decrease. However, the first layer of ResNet or VGG may fluctuate 
during the training process, as shown in Fig. 7. In contrast, deep layers often have a better 
ability than shallow layers to express the target distribution. Furthermore, we prove that the 
stability of distribution is difficult to guarantee even with BN (See the proof in Supplemen-
tary materials).

Table 1  The accuracy of different layers of ResNet

Bold values denote the ideal results

#layer 0% 1% 2% 3% 4% 5% 6% 7% 8% 9% Ideal result %

VOC 1.17 0.44 0.69 0.71 0.55 0.50 0.53 0.85 0.53 64.48 70.44
COCO 0.49 0.43 0.47 0.28 0.30 0.31 0.37 0.78 0.50 27.33 31.26
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7.3  Across‑layer behaviors using other distribution distances

In this experiment, we apply Chebyshev distance (C-distance), Kullback-Leibler diver-
gence (KL-divergence) and Jensen Shannon divergence (JS-divergence) to measure the dis-
tance between the distribution of a layer and the target distribution for ResNet and VGG 
on the VOC and COCO datasets. In this experiment, we verify whether these metrics have 
the same property as the Wasserstein distance. The results are shown in Fig. 5. These met-
rics approximately have the decreasing tendency across different layers. In this sense, these 
metrics demonstrate that deep layers have a better expression ability than shallow layers. 
More importantly, the decreasing tendency of the Wasserstein distance has experimental 
and theoretical justifications.

8  Conclusion

In this paper, we have proposed to interpret deep neural networks (DNNs) by understanding 
layer behaviors. With the help of the optimal transport theory, we propose a teacher-student 
analysis framework to study the across-layer and single-layer behaviors of a DNN. Theoret-
ically, we prove that the across-layer and single-layer Wasserstein distances decrease along 
the depth and training iterations, respectively. However, a deeper layer is not always better 

Table 3  Improve performance of ResNet and VGG on the VOC and COCO datasets. For comparison, we 
apply the classification accuracy, CF1, OF1 and mAP as evaluation metrics

Bold values denote the best results

Method VOC COCO

Accuracy (%) CF1 (%) OF1 (%) mAP (%) Accuracy (%) CF1 (%) OF1 (%) mAP (%)

ResNet 64.48 58.02 59.10 85.18 27.33 55.65 60.30 64.36
ResNet+early-

exit
66.01 58.67 58.76 85.49 30.03 57.49 61.38 67.28

VGG 68.96 58.58 59.71 88.48 32.41 59.37 62.94 70.64
VGG-early-

exit
69.85 59.49 59.94 88.57 33.95 60.32 63.73 71.95

Table 4  The accuracy (%) of 
different parameters s

2
 and � of 

ResNet-18 on VOC2007

Bold values denote the best results

� s
2

0.5 0.6 0.7 0.8 0.9 1

0.5 65.99 65.67 65.24 65.02 64.83 64.44
0.6 65.99 65.96 65.46 65.12 64.78 64.46
0.7 65.99 66.01 65.64 65.30 64.92 64.46
0.8 65.99 66.01 65.64 65.30 64.92 64.46
0.9 65.99 66.01 65.64 65.30 64.92 64.46
1 65.99 66.01 65.64 65.30 64.92 64.46
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than a shallower layer for some samples. Based on these results, we propose an early-exit 
inference method to improve the multi-label classification performance. Extensive experi-
ments justify these theoretical findings. Moreover, the proposed analytical framework can 
facilitate a future research to interpret DNNs.
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