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Towards Lightweight Super-Resolution With Dual
Regression Learning

Yong Guo ", Mingkui Tan"”, Zeshuai Deng

Yanwu Xu

Abstract—Deep neural networks have exhibited remarkable
performance in image super-resolution (SR) tasks by learning a
mapping from low-resolution (LR) images to high-resolution (HR)
images. However, the SR problem is typically an ill-posed problem
and existing methods would come with several limitations. First, the
possible mapping space of SR can be extremely large since there
may exist many different HR images that can be super-resolved
from the same LR image. As a result, it is hard to directly learn
a promising SR mapping from such a large space. Second, it is
often inevitable to develop very large models with extremely high
computational cost to yield promising SR performance. In practice,
one can use model compression techniques to obtain compact
models by reducing model redundancy. Nevertheless, it is hard
for existing model compression methods to accurately identify the
redundant components due to the extremely large SR mapping
space. To alleviate the first challenge, we propose a dual regression
learning scheme to reduce the space of possible SR mappings.
Specifically, in addition to the mapping from LR to HR images,
we learn an additional dual regression mapping to estimate the
downsampling kernel and reconstruct LR images. In this way, the
dual mapping acts as a constraint to reduce the space of possible
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mappings. To address the second challenge, we propose a dual re-
gression compression (DRC) method to reduce model redundancy
in both layer-level and channel-level based on channel pruning.
Specifically, we first develop a channel number search method that
minimizes the dual regression loss to determine the redundancy of
each layer. Given the searched channel numbers, we further exploit
the dual regression manner to evaluate the importance of channels
and prune the redundant ones. Extensive experiments show the
effectiveness of our method in obtaining accurate and efficient SR
models.

Index Terms—Image super-resolution, dual regression, closed-
loop learning, lightweight models.

1. INTRODUCTION

EEP neural networks (DNNs) have been the workhorse
D of many real-world applications, including image classi-
fication [1], [2] and image restoration [3], [4], [5], [6], [7], [8],
[9]1,[10], [11], [12], [13], [14]. Recently, image super-resolution
(SR) has become an important task that aims to learn a non-
linear mapping to reconstruct high-resolution (HR) images from
low-resolution (LR) images. Nevertheless, the SR problem is
typically an ill-posed problem and it is non-trivial to learn an
effective SR model due to several underlying challenges.

First, the space of possible SR mapping functions can be
extremely large since there exist many HR images that can
be super-resolved from the same LR image [15]. In practice,
most methods directly optimize the reconstruction loss (e.g.,
MAE or MSE) in HR domain and often easily obtain very
blurry results with insufficient high-frequency information [16].
In other words, these undesired blurry solutions may take up the
majority of the space of SR mapping to be learned and make the
whole learning space extremely large. As aresult, itis non-trivial
to find a promising one from such a large space. To alleviate this
issue, existing methods seek to increase the model capacity (e.g.,
EDSR [17] and RCAN [18]) and minimize the reconstruction
error between the super-resolved images and the ground-truth
HR images. However, these methods still suffer from such a
large space of possible SR mapping functions (See analysis in
Section III-A) and often yield limited performance. Thus, how
to reduce the possible space of the mapping functions to boost
the training of SR models becomes an important problem.

Second, most SR models often contain a large number of
parameters and come with extremely high computational cost.
To address this, many efforts have been made to design efficient
SR models [19], [20]. However, these models often incur a
dramatic performance gap compared with state-of-the-art SR
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TABLE I
PERFORMANCE COMPARISONS FOR 4 X IMAGE SUPER-RESOLUTION

Set5 Setl4 BSDS100 Urban100 Mangal09
Method #Params (M) | #Madds (G) | ponNR/'SSTM | PSNR /SSIM | PSNR/SSIM | PSNR /SSIM | PSNR / SSIM
Bicubic - - 784270810 | 26.107/0.702 | 25.9670.667 | 23.1570.657 | 24.9270.789
ESPCN [94] ) 02 2021/0.851 | 264070744 | 2550/0.696 | 24.02/0.726 | 23.55/0.795
LapSRN [95] 0.9 292 315470885 | 28.09/0.770 | 27.31/0.727 | 2521/0.756 | 29.09/0.890
DRRN [96] 03 1087.5 31.68/0.889 | 2821/0.772 | 27.38/0728 | 254470764 | 29.46/0.896
CARN [97] 11 14.6 32.13/0.894 | 28.60/0.781 | 27.58/0.735 | 26.07/0.784 | 30.47/0.908
IMDN [98] 0.7 6.6 3021/0895 | 28.58/0.781 | 27.56/0.735 | 26.04/0.784 | 30.45/0.908
PAN [99] 03 45 32.13/0.895 | 28.61/0.782 | 27.59/0.736 | 26.11/0.785 | 30.51/0.910
SRResNet [32] 15 205 32.05/0.891 | 2849/0.782 | 27.61/0.736 | 26.09/0783 | 30.70/0.908
SRGAN [32] 15 205 2046/0838 | 26.60/0.718 | 257470666 | 245070736 | 27.79/0.856
ECBSR [49] 0.6 5.5 319270895 | 2834/0.782 | 27.48/0.739 | 25.81/0.777 -
SMSR [53] 1.0 : 32.12/0.893 | 28.55/0.781 | 27.55/0.735 | 26.11/0.787 | 30.54/0.909
SR-APS [55] 0.1 ] 319370891 | 2842/0.776 | 27.44/0731 | 25.66/0.772 i
DFSR [52] 10.8 116.1 317870890 | 2833707758 | 27.38/0729 | 25.40/0.761 ]
SRDenseNet [33] 2.0 623 32.02/0893 | 28.50/0.778 | 27.53/0733 | 26.05/0781 | 29.49/0.899
EDSR [17] 43.1 463.1 3248/0.898 | 28.81/0.787 | 27.72/0742 | 26.64/0803 | 31.03/0915
DBPN [28] 153 1220.4 30.42/0897 | 28.75/0.786 | 27.67/0.739 | 26.38/0.794 | 30.90/0.913
RCAN [18] 15.6 147.1 32.63/0.900 | 28.85/0.788 | 27.74/0.743 | 267470806 | 31.19/0917
RRDB [100] 16.7 165.2 3273/0901 | 28.97/0.790 | 27.83/0745 | 27.02/0815 | 31.64/0.919
HAN [22] 16.2 1515 32.61/0900 | 28.90/0.789 | 27.79/0.744 | 26.85/0809 | 31.44/0918
CSNLN [21] 6.6 44285 32.68/0900 | 28.95/0.789 | 27.80/0744 | 27.22/0817 | 31.43/0.920
SAN [101] 15.8 150.1 32.6470.900 | 28.92/0.788 | 27.79/0.743 | 26.79/0.806 | 31.18/0.916
ClassSR [12] 30.1 - 3225/0898 | 28.77/0.788 | 27.65/0.741 | 26.70/0.804 | 31.17/0916
SwinIR [44] 11.9 1211 32.92/0904 | 29.09/0.795 | 27.92/0749 | 27.45/0825 | 32.05/0.926
DAT [45] 14.8 155.1 33.08/0906 | 2923/0.797 | 28.00/0751 | 27.87/0834 | 32.51/0.929
DRN-S i3 109.9 32.68/0901 | 289370790 | 27.78 70,744 | 268470807 | 31.5270.910
DRN-L 9.8 248 327410902 | 28.98/0.792 | 27.83/0745 | 27.03/0813 | 317370922
SwinIR-DR 11.9 121.1 33.03/0.904 | 29.19/0.795 | 27.98/0.747 | 27.80/0831 | 32.38/0.925
DAT-DR 148 155.1 33.17/0906 | 2930/0.798 | 28.04/0.752 | 28.04/0.837 | 32.71/0.930

“-” denotes the results that are not reported. We highlight that our dual regression (DR) method is able to enhance both CNN-based and transformer-based SR models,

showing a high flexibility on top of diverse architectures.

methods [21], [22]. Unlike these methods, one can also exploit
model compression techniques (e.g., channel pruning) to obtain
lightweight models. Nevertheless, it is non-trivial to identify
the redundant components (e.g., channels) in SR models due
to the large possible mapping space. Specifically, given an
inaccurate SR mapping, the estimated/predicted redundancy of
model components may be also very inaccurate. More critically,
the redundancy may vary a lot among different layers in the
model and different channels in each layer, making it harder to
identify the redundant components.

In this paper, we propose a novel dual regression learning
scheme to obtain accurate and efficient SR models. To reduce the
possible mapping space, we introduce an additional constraint
that encourages the super-resolved images to reconstruct the in-
put LR images. Suppose there are some high-frequency textures
(e.g., contour of object or human hair) inside LR images, this
constraint guarantees that the super-resolved images are able to
preserve the high-frequency information if they can perfectly
reconstruct the original LR images. In other words, we are able
to effectively exclude a large number of solutions that catas-
trophically lose these high-frequency textures even though they
perform very well on the low-frequency parts (often with a very
small loss w.r.t. MAE or MSE). With this constraint, the dual
regression scheme improves SR performance by reducing the
space of possible SR mappings, yielding a smaller generalization
bound than existing methods (See Theorem 1).

To obtain effective lightweight SR models, we propose a
search-guided pruning pipeline, named the dual regression

compression (DRC) method, to reduce the model redundancy
in both layer-level and channel-level. Specifically, we first
determine the redundancy of each layer by performing channel
number search with our dual regression scheme. Unlike existing
methods, we design an importance-aware search strategy to
facilitate the channel number search for pruning. Then, we
exploit the dual regression scheme to evaluate the importance
of channels and prune those redundant ones according to the
searched channel numbers. Extensive experiments under both
the non-blind and blind SR settings demonstrate the superiority
of our method (See results in Tables I, IT and III).

Our contributions are summarized as follows:

e To alleviate the issue of extremely large SR mapping
space incurred by the nature of ill-posed problems, we
propose a dual regression learning scheme that introduces
an additional dual mapping to reconstruct LR images. The
dual mapping acts as a constraint to reduce the space of
possible SR mapping functions and enhance the training
of SR models.

e Unlike most model compression methods, we propose
a search-guided pruning pipeline, dual regression com-
pression method (DRC), to exploit a reduced map-
ping space to identify both the layer-level and channel-
level redundancy. Specifically, we design an importance-
aware search strategy to identify the redundancy of
each layer and search for a promising channel con-
figuration for the subsequent pruning process. Then,
we conduct channel pruning to remove the redundant
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TABLE II
COMPARISON WITH LIGHTWEIGHT SR MODELS AND PRUNING METHODS ON FIVE BENCHMARKS FOR 4 x SR

. e Set5 Setl4 BSDS100 Urban100 Mangal09

Model Method #Params (K) | #Madds (G) | poNR/'sSTM | PSNR /SSIM | PSNR /SSIM | PSNR/SSIM | PSNR / SSIM

SRCNN [117] 57 85 304870863 | 274970750 | 26.9070.710 | 24.527/0.722 | 27.6670.851

FSRCNN [19] 12 0.7 30.71/0.866 | 27.59/0.754 | 26.98/0.710 | 24.62/0.728 | 27.90/0.852

CARN-M [97] 300 52 31.92/0.890 | 28.42/0.776 | 27.44/0.730 | 25.62/0.769 | 25.62/0.769
VDSR [39] 665 612.6 31.35/0.883 | 28.01/0.767 | 27.29/0.725 | 25.18/0.752 -
LapSRN [95] 813 149.4 31.54/0.885 | 28.19/0.772 | 27.32/0.728 | 25.21/0.756 -
DRRN [96] 297 6.796.9 31.68/0.888 | 28.21/0.772 | 27.38/0.728 | 25.44/0.763 -
MemNet [117] 677 2,662.4 31.74/0.889 | 28.26/0.772 | 27.40/0.728 | 25.50/0.763 -

IMDN [98] 715 409 3221/0.894 | 28.58/0.781 | 27.56/0.735 | 26.04/0.783 | 30.45/0.907

LAPAR-A [118] 659 94.0 32.15/0.894 | 28.61/0.781 | 27.61/0.736 | 26.14/0.787 | 30.42/0.907
LatticeNet [119] 777 436 32.30/0.896 | 28.68/0.783 | 27.62/0.736 | 26.25/0.787 -
DI-trim-0.3-SRResNet [70] 604 14.9 32.32/0.894 | 28.70/0.783 | 27.60/0.737 | 26.14/0.786 -

SMSR [53] 1006 - 32.12/0.893 | 28.55/0781 | 27.55/0.735 | 26.11/0.787 | 30.54/0.909
NAPS [55] 125 7.1 31.93/0.867 | 27.68/0.756 | 26.98/0.716 | 24.65/0.730 -
SRPN-Lite [73] 623 35.8 322470896 | 28.69/0.784 | 27.63/0.737 | 26.16/0.788 -

ELAN-light [120] 640 53.72 32.43/0.897 | 28.78/0.785 | 27.69/0.740 | 26.54/0.798 | 30.92/0.915

Baseline 4300 109.9 32.68 /0901 | 28.93/0.790 | 27.78/0.744 | 26.8470.807 | 31.5270.919

CP [121] 3473 TT4 322670887 | 284770.777 | 27.3870.732 | 2642/0.794 | 31.0370.904

DRN.S ThiNet [58] 3473 774 32.33/0.889 | 28.57/0.781 | 27.45/0.734 | 26.53/0.796 | 31.12/0.907

DCP [60] 3473 774 32.41/0.893 | 28.65/0782 | 27.52/0.737 | 26.61/0.800 | 31.21/0.912

SRP [73] 3473 774 32.49/0.894 | 28.77/0.786 | 27.63/0.740 | 26.80/0.806 | 31.44/0.917

DRC (Ours) 3116 723 32.66/0.900 | 28.92/0.789 | 27.82/0.744 | 26.95/0.809 | 31.64/0.921

Baseline 8§97 10.0 324470897 | 28.77/0.85 | 27.69/0.740 | 2647/0.798 | 30.9270915

CP [121] 689 73 32.0570.883 | 28.3470.771 | 27.36/0.730 | 26.13/0.789 | 30.57/0.910

SwinlR light [44] | THiNet [58] 689 73 32.24/0.888 | 28.57/0.775 | 27.42/0.732 | 26.25/0.791 | 30.74/0.912

DCP [60] 689 73 3227/0.891 | 28.66/0.780 | 27.52/0.735 | 26.31/0.793 | 30.79/0.911

SRP [73] 689 73 30.31/0.892 | 28.71/0781 | 27.51/0.735 | 26.33/0.794 | 30.82/0.913

DRC (Ours) 635 6.8 32.44/0.896 | 28.81/0.785 | 27.70/0.738 | 26.44/0.797 | 30.94/0.915

We consider the pruning ratio of 30% for all the pruning methods for fair comparison. We highlight that our pruned model consistently outperforms all the considered

lightweight SR models as well as the pruning methods.

TABLE III
QUANTITATIVE COMPARISONS ON DIV2KRK [113] UNDER THE BLIND
SETTING. ON.
Method #Params (M) | #Madds (G) | PSNR | SSIM
Bicubic - - 2533 | 0.679
Bicubic+ZSSR [30] 0.2 - 25.61 | 0.691
EDSR [17] 43.1 463.1 25.64 | 0.692
RCAN [18] 15.6 147.1 25.66 | 0.693
DBPN [28] 15.3 1220.4 25.58 | 0.691
DBPN [28]+Correction [122] 10.4 - 26.79 | 0.742
KernelGAN [112]+SRMD [41] 1.7 - 27.51 | 0.726
Kernel GAN [112HZSSR [30] 0.4 - 26.81 0.731
IKC [31] 5.3 404.5 27.70 | 0.766
DANvI [123] 43 175.8 27.55 | 0.758
DANvV2 [124] 4.7 174.1 28.74 | 0.789
AdaTarget [125] 16.7 165.2 28.44 | 0.787
KOALAnet [126] 6.5 64.3 2777 | 0.763
FKP [13]+USRNet [127] 0.7 - 21.56 | 0.606
BSRDM [128] 0.8 - 23.08 | 0.632
Real-RRDB(p=0.5) [129] 16.7 165.2 28.53 | 0.790
DCLS [116] 19.1 69.9 28.99 | 0.795
DCLS-DRC (Ours) 14.2 57.1 29.01 | 0.798

“-” denotes the results that are not reported or not applicable. We highlight that, taking DCLS
[117] as the baseline, our DRC achieves lossless compression while greatly reducing the
number of parameters.

channels according to the searched channel number
configuration.

e Extensive experiments demonstrate the flexibility of our
dual regression scheme for SR. In practice, our method
is applicable to boost the training and model compression
for both CNN-based and transformer-based SR models.
Furthermore, we demonstrate that our DRC scheme is able
to achieve a lossless compression to reduce the compu-
tational cost under both the non-blind and the blind SR
settings.

This paper extends our preliminary version [23] from several

aspects. 1) We propose a dual regression compression scheme

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 13:58:41 UTC from IEEE Xplore. Restrictions apply.

(DRC) to achieve lossless compression for SR models. Unlike
most existing methods, our DRC simultaneously conduct chan-
nel number search and channel pruning to enhance the perfor-
mance of model compression. 2) We present a dual regression
based channel number search method to identify the layer-level
redundancy by determining the number of channels for each
layer. During the search process, we design an importance-
aware search strategy to facilitate the channel number search
for pruning. 3) We develop a dual regression based channel
pruning algorithm that exploits the dual regression manner to
evaluate the importance of channels when performing channel
pruning. 4) We conduct more experiments on both CNN-based
and transformer-based SR models to investigate the effect of our
dual regression scheme. 5) We demonstrate the effectiveness
of our dual regression compression scheme under both the
non-blind and blind SR settings.

II. RELATED WORK

A. Image Super-Resolution

Existing SR methods mainly include interpolation-based ap-
proaches [24], [25], [26], [27] and reconstruction-based meth-
ods [18], [28], [29], [30], [31]. Interpolation-based methods
may oversimplify the SR problem and usually generate blurry
images [32], [33]. The reconstruction-based methods [34], [35],
[36] reconstruct the HR images from LR images. Following such
methods, many CNN-based methods [37], [38], [39], [40], [41],
[42], [43] were developed to learn a reconstruction mapping.

Recently, Ledig et al. [32] propose a deep residual network
SRResNet for super-resolution. Lim et al. [17] remove unnec-
essary modules in the residual network [1] and design a very
wide network EDSR. Haris et al. [28] propose a back-projection
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network (DBPN) to iteratively produce LR and HR images.
Zhang et al. [18] propose a channel attention mechanism to
build a deep model called RCAN to further improve the SR
performance. Mei et al. [21] propose a Cross-Scale Non-Local
attention module for more accurate image SR. Niu et al. [22]
propose a holistic attention network (HAN) to model the in-
terdependencies among layers, channels, and spatial positions.
Liang et al. [44] develop a transformer model to improve the per-
formance of image restoration. Chen et al. [45] further propose
a dual aggregation transformer to effectively aggregate features
across spatial and channel dimensions. Moreover, Zhang et al.
[46] focus on blind deblurring and develop a pixel screening
based intermediate correction method. However, the training
process of these methods still has a very large space of the
possible SR mappings, making it hard to learn a good solution
in practice.

B. Lightweight Model Techniques

Lightweight models have gained great attention in recent
years [47], [48]. One can obtain lightweight models by directly
designing efficient architectures or distilling knowledge from
other models. Hui et al. [20] propose an information distil-
lation block to extract the local long and short-path features
for lightweight SR networks. Zhang et al. [49] propose a re-
parameterizable building block for efficient SR. However, these
models often incur a dramatic performance gap compared to
state-of-the-art SR methods [21], [22]. Besides these methods,
one can enhance the lightweight SR performance using knowl-
edge distillation technique [50], [51], [52]. Gao et al. [50] use a
lightweight student SR model to learn the knowledge from the
deeper teacher SR network. Lee et al. [51] propose a distillation
framework that leverages HR images as privileged information
to boost the training of the student network. Wang et al. [53]
explore the sparsity in image SR and predict a pixel-level redun-
dancy mask to improve the inference efficiency of SR networks.
Yu et al. [51] propose a hyperparameter optimization method
to search for an efficient architecture for super-resolution from
scratch. Yu et al. [54] shares a similar idea with us to search/find
the optimal number of channels. However, both methods define
a very limited search space where all the blocks/cells share
the same number of channels, ignoring the differences of re-
dundancy among different layers. Thus, they cannot identify
the layer-wise redundancy of channels and may still result in
suboptimal model performance. Zhan et al. [55] further combine
neural architecture search with layer-wise pruning strategy to
obtain efficient SR models.

Besides these methods, we can also use model compression
techniques to obtain lightweight models [56], [57], [58], [59]. As
one of the predominant approaches, channel pruning [60], [61],
[62], [63], [64], [65] seeks to remove the redundant channels
of deep models to obtain compact subnets. It has been shown
that these subnets often come with promising accuracy [66]
and robustness [67], [68], [69]. Recently, Hou et al. [70] use
conditional covariance [71] to measure the importance of chan-
nels to the final output of SR models. Li et al. [72] propose a
differentiable meta channel pruning method (DHP) to compress

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 12, DECEMBER 2024

Fig. 1. The proposed dual regression learning scheme contains a primal
regression task for SR and a dual regression task to reconstruct LR images.
The primal and dual regression tasks form a closed-loop.

SR models. Zhang et al. [73] impose regularization on the pruned
structure to ensure the locations of pruned filters are aligned
across different layers of residual blocks. In addition, some
quantization-based methods [74], [75], [76] exploit low bits
to accelerate the inference speed of SR models. However, it
is still non-trivial for these methods to identify the redundant
components due to the extremely large possible function space.

Unlike them, we seek to reduce the possible function space to
alleviate the training/compression difficulty. Thus, it becomes
possible to obtain lightweight SR models without significant
performance degradation (See Table II).

C. Dual Learning

Dual learning [77], [78], [79], [80] contains a primal model
and a dual model and learns two opposite mappings simulta-
neously to enhance the performance of language translation.
Recently, this scheme has also been used to perform image
translation without paired training data [81], [82]. Specifically,
a cycle consistency loss is proposed to avoid the mode collapse
issue of GAN methods [81], [83], [84] and help minimize
the distribution divergence. However, these methods cannot be
directly applied to the standard SR problem. By contrast, we
use the closed-loop to reduce the space of possible functions of
SR. Moreover, we consider learning asymmetric mappings and
provide a theoretical guarantee on the rationality and necessity
of using a cycle.

III. DUAL REGRESSION NETWORKS

In this paper, we propose a dual regression learning scheme
to obtain accurate and efficient SR models. As shown in Fig. 1,
we introduce a constraint on LR images to reduce the space of
possible SR mapping functions. To further reduce the model
redundancy, we propose a dual regression compression (DRC)
method to compress large models (See Fig. 2). For convenience,
we term our models Dual Regression Networks (DRNGs).

A. Dual Regression Learning for Super-Resolution

Due to the nature of the ill-posed problems, the space of pos-
sible SR mapping functions can be extremely large, making the
training very difficult. To alleviate this issue, we propose a dual
regression learning scheme by introducing an additional con-
straint on LR data. From Fig. 1, besides the mapping LR— HR,
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Overview of the dual regression compression (DRC) approach. Given a target compression ratio r, we first determine the redundancy of each layer by

performing the dual regression based channel number search. Then, according to the searched channel numbers, we evaluate the importance of channels and prune

those redundant ones to obtain the compressed model P.

we also learn an inverse/dual mapping from the super-resolved
images back to LR images. Let x€ X’ be LR images and y€) be
HR images. Unlike existing methods, we simultaneously learn a
primal mapping P to reconstruct HR images and a dual mapping
D to reconstruct LR images. Formally, we formulate the SR
problem into the dual regression learning scheme which involves
two regression tasks.

Definition 1 (Primal Regression Task for SR): We seek to find
a function P: X—Y, such that the prediction P(x) is similar to
its corresponding HR image y.

Definition 2 (Dual Regression Task for SR): We seek to find
afunction D: Y— X, such that the prediction of D(y) is similar
to the original input LR image x.

The primal and dual learning tasks form a closed-loop and
provide important supervision to train the models P and D. If
P(x) was the correct HR image, then the downsampled image
D(P(x)) should be very close to the input LR image x. By
jointly learning these two tasks, we train the models based on N
paired samples {(x;, y;) }2,, where x; and y; denote the ith pair
of LR and HR images. Let Lp and Lp be the loss function (¢4 -
norm) for the primal and dual tasks, respectively. The training
loss becomes

Lpr(P,D)

ZEP Yi)

prlmal regression loss

+ A Lp (D(P(x3)), %) -

dual regression loss

&)

Here, A controls the weight of the dual regression loss (See the
sensitivity analysis of A in Section V-D).

More critically, we also theoretically justify our method. In
practice, our method has a smaller generalization bound than
the vanilla training methods (i.e., without the dual mapping).
In other words, our method helps to learn a more accurate LR
— HR mapping and improve SR performance. We summarize
the theoretical analysis in Theorem 1 and put the proof in
supplementary.
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Theorem 1: Let Lpr(P, D) be a mapping from X'x) to
[0, 1] and H gyq; be the functlon space. Let IV denote the num-
ber of samples and R L represent the empirical Rademacher
complexity [85] of dual learning. We use B(P), PEH to de-
note the generalization bound of the supervised learning w.zt.
the Rademacher complexity R3%(#). For any error §>0,
the generalization bound of the dual regression scheme is

B(P, D)=2RE"(Hgua)+31/ 55 log(%). Based on the defini-
tion of the Rademacher complexity, the capacity of the function
space Hguq: 1s smaller than the capacity of function space H,
ie, RPT < R3T. In this sense, the dual regression scheme has
a smaller generalization bound than the vanilla learning scheme

< B(P).

Differences from CycleGAN based methods [81], [82]: Both
DRN and CycleGAN [81] exploit the similar idea of building
a cycle, but they have several essential differences. First, they
consider different objectives. CycleGAN uses cycles to help
minimize distribution divergence but DRN builds a cycle to
improve reconstruction performance. Second, they consider dif-
ferent cycle/dual mappings. CycleGAN learns two symmetric
mappings but DRN considers learning asymmetric mappings.
Essentially, the primal mapping LR — HR is much more com-
plex than the dual mapping HR — LR. Considering this, we
design the dual model with a very small CNN (See the detailed
model design in supplementary) and introduce a tradeoff pa-
rameter A in (1). Third, our dual regression method is a more
general scheme that can be used in more application scenarios
than CycleGAN. Specifically, our method is a plug-and-play
module that can be used to enhance diverse SR models and/or
conduct model compression. By contrast, CycleGAN cannot be
directly applied on top of diverse SR models since it naturally
requires the dual model to have the same architecture as the
original/primal model. Such a large dual model may increase
the training difficulty and introduce a lot of redundancy. Instead,
our method builds a very simple dual model that is more suitable
for SR tasks where the downsampling mapping is much easier
to learn than the upsampling mapping. Experiments show that

B(P, D)
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Algorithm 1: Dual Regression Based Channel Number
Search.

Input: Training data S*"™ and validation data S¥?!;
Original channel numbers {¢;}£_ ;
Channel number configurations {cy } =
Candidate scaling factors V;
Target compression ratio 7.

Output: Searched channel numbers {é}~ ;.

1 Rebuild model cv with configuration parameters {a }% ;;

2 while not converge do

3 /I Update the channel number configuration o

4 Sample data batch from S¥2! to compute £}

5 Evaluate channel importance and rank the channels;

6 Update ¢ by descending V, C‘I’)a}}{((a; WH), D);

7 /I Update model parameters W

8 | Sample data batch from S'"#i" to compute L3,

9 Update W by descending Vw LE&" ((a; W), D);

10 end

1 forl=1to L do

12 Select the scaling factor 0 = argmax, ¢, al(”);

13 | Compute the channel number é = ¢; - (1 —r) - 0;
14 end

DRC performs well on both CNN-based and transformer-based
architectures, and under both non-blind and blind SR settings
(See results in Tables I, II, and III).

B. Dual Regression Compression

Most SR models have extremely high computational cost and
cannot be directly deployed to the devices with limited com-
putation resources. To alleviate this issue, one can apply model
compression techniques to obtain lightweight models. However,
it is non-trivial to accurately identify the redundant components
(e.g., layers or channels) due to the extremely large mapping
space. Specifically, once we learn an inaccurate SR mapping,
the predicted model redundancy may be also inaccurate, leading
to significant performance drop (See results in Tables II).

To address the above issues, we build a lightweight dual
regression compression method based on channel pruning tech-
niques to compress SR models in a reduced mapping space. Let
(+) be the function to measure the computational cost of models
(e.g., the number of parameters). Given a primal model P and a
target compression ratio r, we seek to obtain a compressed model
P that satisfies the constraint ¢(P) < (1 — 7)1 (P). Supposing
that both P and P share the same dual model D, the optimization
problem becomes

min Lpr(P, D) st. $(P) < (1=r)p(P). ()
P

In this paper, we seek to reduce the model redundancy in
both layer-level and channel-level. As shown in Fig. 2, we first
determine the redundancy for each layer by performing dual
regression channel number search. Then, we exploit the dual
regression scheme to evaluate the importance of channels and
prune the redundant ones according to the searched channel
numbers.

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 12, DECEMBER 2024

1) Dual Regression Based Channel Number Search: Most
channel pruning methods adopt a hand-crafted compression pol-
icy to prune deep models [90], [91], e.g., pruning 50% channels
in all the layers. However, such a compression policy may not
be optimal since different layers often have different redun-
dancy [92]. To address this issue, we propose a dual regression
channel number search method to recognize the redundancy of
each layer by determining the promising number of channels to
be preserved. To save the training cost, we follow [65], [89] and
use the weight-sharing strategy. Unlike existing search methods,
we propose an importance-aware search strategy to select chan-
nels according to their importance during the search process. We
show the details of the proposed method in Algorithm 1.

Given a primal model P with L layers, we use {¢;}~; to
denote the channel numbers of different layers. To obtain a
model that satisfies the target compression ratio r, for any layer
[, we first remove ¢; -  channels and then investigate whether
we can further remove more channels without degrading the
performance. Nevertheless, the search space would be extremely
large since the candidate channel number can be any positive
integer lower than ¢;. To alleviate this issue, we construct the
search space by considering a set of candidate scaling factors
V = {50%, 60%, 70%, 80%, 90%, 100%} to scale the channel
number. Specifically, for the [th layer, we seek to select a
scaling factor v € V' to obtain the resultant channel number
¢ =c¢; - (1 —r) -0 in the compressed model. Notably, for the
[th layer, we use 7 to define the maximum number of channels
¢; - (1 —r), which acts as the upper bound of the candidate
channel numbers during the search process. We use six v for each
layer to define the search space of candidate channel numbers,
which enables selecting different channel numbers that are not
larger than the upper bound.

Given a target compression ratio r and a candidate scaling
factor v, we need to select k = ¢; - (1 — r) - v channels to build
the /th layer. As shown in Fig. 4(a) and (b), most search methods
do not consider the importance of channels when determining
the optimal channel configuration. The ignoration of channel
importance may cause inconsistency between channel number
search and channel pruning, resulting in limited performance
(See Table IV). To address this issue, we adopt the consis-
tent criterion of evaluating channel importance during both the
search process and the following pruning process. As shown in
Fig. 4(c), we first rank the channels according to their impor-
tance in terms of the /;-norm on the weights of each channel.
Then, we selected the top-k important channels based on the
ranking result. In this sense, we optimize the top-%k important
channels instead of only the first k£ channels. We highlight that
the importance rank of channels can be continuously updated
during the search process since we also optimize the weights at
the same time.

To find the promising channel configurations, we adopt the
differentiable search strategy [93] by relaxing the search space
to be continuous. For any layer [, we construct a channel number
configuration oy, € RV in which each element ") indicates
the importance of a specific scaling factor v. For any layer [,
let X be the input features, W) be the parameters, and ®
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TABLE IV
EFFECT OF IMPORTANCE-AWARE SEARCH AND DUAL REGRESSION SCHEME ON SR MODEL COMPRESSION FOR 4 x SR

Method Channel-wise Weight Sharing | Importance-aware Search | Dual | Search Cost (h) | #Params (M) | MAdds (G) | PSNR on Set5
Manually Designed - - - - 3.4 774 32.33
Random Search - - - - 3.2 74.9 32.27
X X X 23 32 73.9 32.37
DARTS [93] v X X 10 33 75.0 32.40
v v X 10 32 74.6 32.53
DRC v v v 10 31 723 32.66

Interestingly, we find that weight sharing is able to greatly reduce the search cost while obtaining similar search results with the baseline DARTS approach. More critically, when comparing
the fifth and the sixth rows, the importance-aware search strategy is particularly effective in finding a smaller model but with better performance. If we further apply our dual regression

scheme, we obtain the best result among the considered variants.

be the convolutional operation. For convenience, we use Xﬁ) K]

and W[(i) k) to denote the features and parameters w.r.t. the top-

k important channels (see the channel selection in Fig. 4(c)).

In this paper, we use cl(v) to denote the number of channels

specified by a specific scaling factor v. Following [93], we relax
the categorical choice of a particular factor as a softmax over
all possible factors. Then, we use the sum operation to make the
search space continuous and the search process differentiable.
Formally, the output of the /th layer is

(U))

X+ — Z exp(q; :
vy ey eXp(al(v ))

With the continuous relaxation, the task of channel number
search becomes learning a set of continuous variables o =
{ay}£,. As shown in Algorithm 1, for any layer [, we obtain the
resultant channel numbers by selecting the most likely element
in .

Due to the extremely large function space of the ill-posed SR
problem that contains a lot of undesired blurry solutions, it is
non-trivial to accurately identify the redundancy of each layer
for most search methods. To enhance the search process, we
minimize the dual regression loss to reduce the space of possible
mapping functions. Let £82" and £}3 be the dual regression
loss computed on the training data and validation data. Here, we
use the continuous variables ¢ and the model parameters W to
represent the primal model P = (a; W). Given a dual model
D, the optimization problem of channel number search becomes

@) @)
X[l:cl(v)] ® W[l:cl(v)] ’ (3)

min Ly ((a; W*), D)
(e
s.t. W* = argmin L83 ((a; W), D). 4)
w

Differences from DARTS [93]: Our DRC has essential dif-
ferences from DARTS. First, we design an importance-aware
search strategy to facilitate the channel number search for
pruning. Instead, DARTS are designed for architecture design,
which does not involve important channel selection. Therefore,
it is easier for our proposed DRS than DARTS to identify
the channel redundancy for each layer. Our searched model
outperforms that searched by DARTS significantly (see results in
Table IV). Second, the formulation of our dual regression-based
channel number search (DRS) is different from DARTS. Our
DRS is built upon our dual regression scheme, which helps to
constrain the complex possible function space of the ill-posed
SR optimization problem (see Theorem 1). Thus, our DRS
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makes it easier to identify the layer-wise redundancy for channel
pruning, resulting in lightweight SR models without significant
performance degradation after channel pruning. Instead, without
using the dual regression scheme, DARTS makes it hard to
recognize the redundancy of SR models accurately. Thus, it
may only obtain less compact models with larger performance
degradation (see results in Table IV).

2) Dual Regression Based Channel Pruning: Based on the
searched channel numbers, we still need to determine which
channels should be pruned.

One of the key challenges is how to accurately evaluate the
importance of channels.

To address this, we develop a dual regression channel pruning
method that exploits the dual regression scheme to identify the
important channels. We show our method in Fig. 3.

Let P and P be the original primal model and the compressed
model, respectively. We use X1 and X(+1 to denote the
output feature maps of the I/th layer in P and P. Given the
searched channel numbers {¢;} |, we seek to select the chan-
nels which really contribute to SR performance. Nevertheless,
this goal is non-trivial to achieve due to the extremely large
mapping space incurred by the ill-posed problem. To address
this issue, we exploit the dual regression scheme to evaluate the
importance of channels. Specifically, we consider one channel
as an important one if it helps to reduce the dual regression loss
Lpr (P, D). Moreover, for any layer I, we also minimize the
reconstruAction error [90], [102] of the feature maps between
P and P, ie., Ly(XUHD XU+D) to further improve the
performance. Given a specific channel number ¢;, we impose
an fy-norm constraint |[W®)||;<¢ on the number of active
channels in W), Formally, the channel pruning problem for
the [th layer is

min Ly (XD, X0+D)
W ’

+7Lpr(P, D), st |[WO|<é, )

where 7 is a hyper-parameter that controls the weight of the dual
regression loss (See more discussions on v in Section V-E).

However, Problem (5) is hard to solve due to the training
difficulty incurred by the {y-norm constraint. To address this,
we adopt a greedy strategy [60], [103], [104] in which we first
remove all the channels and then select the most important
channels one by one.

Following [60], we perform channel selection according to
the gradients w.r.t. different channels.
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Fig. 3. The dual regression based channel pruning method. We evaluate the importance of channels by computing both the feature reconstruction loss £y and

the dual regression loss Lpg. Here, X+ and X+ denote the output features of the [th layer in the original model and the pruned model, respectively. ¢;
and ¢; denote the channel number of the /th layer in the original model and the pruned model.
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(a) Independent channel number search strategy. (b) Channel-wise weight-sharing strategy.
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(c) Overview of our importance-aware search strategy.

Fig. 4. Overview of most channel number search strategies and our importance-aware search strategy. (a) Some previous works [86], [87] assume that different
channel configurations should be treated individually. For two candidate numbers of channels k1 and k2 (k1 < k2), the selected ko channels are independent
of the k1 channels. (b) Some other works [65], [88], [89] use the weight-sharing strategy to reduce the search cost. For two candidate numbers of channels k1
and kg (k1 < k2), the selected ko channels contain all the k; channels. The weights of these overlapped channels are shared across different sets of channels
during searching. (c) Based on the weight-sharing strategy, we further propose an importance-aware search strategy to search for a promising/suitable channel
configuration to recognize and reduce layer-wise redundancy. For each candidate number of channels k, we select top-k important channels and ignore the rest of
the redundant channels simultaneously.
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IV. EXPERIMENTS

We conduct extensive experiments to verify the effective-
ness of the proposed methods. First, we evaluate the proposed
dual regression (DR) learning scheme. Second, we compare
the proposed dual regression compression (DRC) method with
different model compression methods. Third, we further apply
our DRC method to compress blind SR models. The source code
is available at https://github.com/guoyongcs/DRC.

A. Datasets and Implementation Details

Based on the dual regression scheme, we build our DRN based
on the design of U-Net for SR [105], [106] (See more details
in the supplementary materials). We first propose two models,
including a small model DRN-S and a large model DRN-L.
We also apply our dual regression scheme to two popular SR
models, i.e., SwinlR [44] and DAT [45]. Then, we use the
proposed dual regression compression method to compress the
DRN-S and SwinIR-light [44] models. By default, we con-
sider the target pruning ratio of 30% in most experiments. We
also conduct additional experiments with other pruning ratios
r € {30%, 50%, 70%} and put the results in supplementary.

Datasets and evaluation metrics: Following [100], we train
our models on DIV2K [107] and Flickr2K [17] datasets, which
contain 800 and 2,650 images separately. For quantitative com-
parison, we evaluate different SR methods on five benchmark
datasets, including Set5 [108], Set14 [109], BSDS100 [110],
Urban100 [111] and Mangal09 [112]. Moreover, for the blind
SR setting where the degradation model of each test LR image
is unknown, we use the DIV2KRK [113] dataset to evaluate
the performance of different blind SR methods. To assess the
quality of super-resolved images, we adopt two commonly used
metrics, i.e., PSNR and SSIM [114]. The computational cost
#MAdds are measured on a 96 x 96 LR image.

Training details: During the training of our DRN-S and
DRN-L, we apply Adam [115] with 8; = 0.9, 52 = 0.99 and
set minibatch size as 32. We use RGB input patches with size
48 x 48 from LR images and the corresponding HR patches
as the training data, and augment the training data following
the method in [17], [18]. The learning rate is initialized to
10~* and decreased to 10" with a cosine annealing strategy.
To train the SwinIR-DR and DAT-DR models, we follow the
recipe of the training setting of SwinIR [44] and DAT [45],
respectively. As for model compression, following the pruning
pipeline of [60], [104], we take two lightweight models DRN-S
and SwinIR-light [44] as the baselines, and conduct pruning
followed by finetuning. For the blind SR setting, we randomly
generate anisotropic Gaussian kernels to synthetic LR images
from the given HR images following the setting in DCLS [116].
We use the synthetic LR-HR paired data to train and compress
the baseline DCLS [116] model to obtain the lightweight DCLS-
DRC model.

Details of channel number search and channel pruning: We
search the channel numbers in each layer for the compressed
models on DIV2K [107] dataset. We primarily consider remov-
ing 7 = 30% to obtain more lightweight SR models for both
our DRN-S and the SwinIR-light [44] models. Following [93],
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we use zero initialization for the continuous variables o, which
ensures « to receive sufficient learning signal at the early stage.
We use Adam [115] optimizer to train the model with the learn-
ingrate ) = 3 x 10~* and the momentum 3 = (0.9, 0.999). We
train the channel number search model for 100 epochs with
a batch size of 16. The channel number search process takes
approximately 10 hours on a TITAN A100 GPU. As for channel
pruning, we perform dual regression channel pruning to select
important channels on DIV2K [107] dataset. During pruning,
once we remove the input channels of the /th convolution layer,
the output channels of the previous convolution layer can be
removed correspondingly. Once a new channel is selected, to
reduce the performance drop, we apply the SGD optimizer with
a learning rate of 5 x 107° to update the parameters of selected
channels for one epoch.

B. Comparisons With State-of-the-Art SR Methods

In this experiment, we compare our method with state-of-the-
art SR methods in terms of both quantitative results and visual
results.

For the quantitative comparison, we show the PSNR and
SSIM values of different methods for 4x super-resolution in
Table I. For the quality comparison, we provide visual compar-
isons for our method and the considered methods in Fig. 5. We
put more results in the supplementary materials.

From Table I, our proposed dual regression scheme is able to
boost the training of the SR models. For example, the DAT-DR
model equipped with our dual regression scheme achieves a
better performance than the DAT [45] baseline. When compared
with most state-of-the-art methods, our DAT-DR model con-
sistently achieves the best performance on the five benchmark
datasets. From Fig. 5, models equipped with our dual regres-
sion scheme, including our DRN-L, SwinIR-DR and DAT-DR,
consistently produce sharper edges and shapes for both 4 x SR.
Instead, other baselines may produce blurrier ones (See more re-
sults in the supplementary materials). These results demonstrate
the effectiveness of our dual regression scheme.

C. Comparisons With Lightweight SR Models

To demonstrate the effectiveness of our compression method,
we compare our dual regression compression method and several
representative channel pruning methods, including CP [121],
Thinet [58], DCP [60] and SRP [73].

To this end, we apply the considered methods to compress
our DRN-S model and the SwinlIR-light [44] model for 4x
SR. As shown in Table II, compared with the competitive
lightweight models [53], [55], [70], [73], the model obtained
by our DRC method is able to achieve better performance in
terms of both PSNR and SSIM. Moreover, when comparing with
different pruning strategies, our DRC is able to achieve lossless
compression even when we consider very lightweight/compact
models that are unlikely to have too much redundancy, e.g.,
SwinIR-light [44]. For example, the compressed SwinIR-light
model (with 635 K parameters) obtained by our DRC scheme
achieves similar performance to the baseline model (with 897 K
parameters). Moreover, we provide visual comparisons for the
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Visual comparisons of the images produced by different models for 4x image super-resolution on benchmark datasets. We show that all the models

enhanced by our DR consistently produce sharper images, i.e., with more high-frequency information, than their original counterparts.

Baseline DRC (Ours)

DRN-S

SwinlR-light

Comparisons among different pruning methods based on both DRN-S
and SwinIR-light. Our DRC consistently produces sharper images based on both
DRN-S and SwinIR-light.

Fig. 6.

compressed SR models obtained by different compression meth-
ods in Fig. 6. Obviously, our DRC models consistently obtain
promising SR images with clearer textures, showing the effec-
tiveness of our proposed dual regression compression method.

D. Model Compression of Blind SR Models

In this part, we investigate the effect of our dual regres-
sion compression (DRC) scheme under the blind SR set-
ting. We further apply our proposed compression scheme to
the blind SR model DCLS [116] to obtain a more compact
model named DCLS-DRC. We compare the compressed DCLS-
DRC with existing state-of-the-art blind SR methods under the
DIV2KRK [113] dataset. As shown in Table III, the compressed
DCLS-DRC model even achieves a better performance than the
baseline DCLS [116] model. Meanwhile, the DCLS-DRC model
achieves the best performance on DIV2KRK [113] with less
computational consumption than most existing blind SR meth-
ods. The results in Tables II and III demonstrate the effectiveness
of our DRC under both the non-blind and the blind settings.

V. FURTHER EXPERIMENTS

We provide more discussions on the proposed methods. First,
we investigate the effect of the dual regression channel number
search method in Section V-A. Second, we conduct ablation
studies on the dual regression learning scheme in Section V-B.
Third, we investigate the effect of the dual regression pruning
method in Section V-C. Fourth, we analyze the effect of the
hyper-parameter A and v in Sections V-D and V-E, respectively.
Then, we analyze that the key component of our dual regres-
sion scheme in Sections V-F and V-G. Moreover, we further

TABLE V
THE EFFECT OF THE PROPOSED DUAL REGRESSION LEARNING SCHEME ON
SUPER-RESOLUTION PERFORMANCE IN TERMS OF PSNR SCORE ON THE FIVE
BENCHMARK DATASETS FOR 4 x SR

Model | Dual Set5 Setl4 | BSDS100 | Urbanl00 | Mangal09
DRN-S X 32.53 | 28.76 27.68 26.54 31.21
v 32.68 | 28.93 27.78 26.84 31.52
DRN-L X 32.61 | 28.84 27.72 26.77 31.39
v 32.74 | 28.98 27.83 27.03 31.73
TABLE VI

THE EFFECT OF DUAL REGRESSION CHANNEL PRUNING ON THE MODEL
COMPRESSION PERFORMANCE FOR 4 x SR

Compression Ratio | Dual Set5 Setl4 | BSDS100 | Urbanl00 | Mangal09
30% X 32,53 | 28.73 27.60 26.67 31.25
v 32.66 | 28.92 27.82 26.95 31.64
50% X 32.38 | 28.67 27.53 26.47 31.09
v 32.50 | 28.82 27.71 26.59 31.28
0% X 3231 | 28.65 27.63 26.35 30.88
v 3240 | 28.71 27.66 26.44 31.09

investigate the effect of an additional cycle constraint on the HR
domain in Section V-H

A. Effect of Dual Regression Channel Number Search

We conduct an ablation study to verify the effect of our
dual regression channel number search method. To be specific,
we evaluate the baseline compression methods on our DRN-S
model with a 30% compression ratio for 4x SR and show
the experimental results in Table IV. Let “Manually Designed”
denote the compression method that removes a specific number
of channels in each layer (remove 30% channels in each layer).
“Random Searched” denotes the compression method that ran-
domly searches for a candidate scaling factor v to decide the
channel numbers of each layer. As shown in Table IV, we find
that weight sharing is able to greatly reduce the search cost
while obtaining similar search results. More critically, when
comparing the fifth and the sixth rows, the importance-aware
search strategy is particularly effective in finding a smaller
model but with better performance. If we further apply our
dual regression scheme, we obtain the best result among the
considered variants.
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TABLE VII
COMPARISON WITH THE BASELINE THAT USES DIFFERENT DUAL MODELS IN TERMS OF PSNR FOR 4x SR

Method

| Set5 | Setl4 | BSDS100 | Urbanl00 | Mangal09

DRN-S without any dual model
DRN-S with a single dual model (without progressive)
DRN-S with more powerful dual models (2x larger)
DRN-S (Ours)

3253 | 28.76 27.68 26.54 31.21
32.63 | 28.87 27.73 26.71 31.40
32.69 | 28.93 27.80 26.83 31.50
32.68 | 28.93 27.78 26.84 31.52

We show that building the progressive dual models is able to improve the performance. Nevertheless, a small dual model is good enough compared

to the 2x larger counterparts.

B. Effect of Dual Regression Learning Scheme

We conduct an ablation study on our dual regression learning
scheme and report the results for 4x SR in Table V. We eval-
uate the dual regression learning scheme on both our DRN-S
and DRN-L models and show the experimental results on five
benchmark datasets. From Table V, compared to the baselines,
the models equipped with the dual regression learning scheme
consistently yield better performance on all five benchmark
datasets. These results suggest that our dual regression learning
scheme improves the reconstruction of HR images by introduc-
ing an additional constraint to reduce the space of the mapping
function. We also evaluate the effect of our dual regression
learning scheme on other models, e.g., SRResNet [32] based
network, which also yields similar results (See more results in
the supplementary materials).

C. Effect of Dual Regression Channel Pruning

In this part, we investigate the effect of the dual regression
channel pruning method. Specifically, we evaluate our methods
on our 4x DRN-S model with compression ratios of 30%, 50%,
and 70%. From Table VI, with the dual regression channel prun-
ing method, we are able to obtain lightweight SR models with
better performance. Besides, the compressed models obtained
by our dual regression channel pruning method consistently
achieve higher SR performance on five benchmark datasets. This
experiment demonstrates the effectiveness of our dual regression
selection method to obtain efficient SR models.

D. Effect of Hyper-Parameter A in (1)

We conduct an experiment to analyze the effect of the hyper-
parameter A in (1), which controls the weight of the dual regres-
sion loss. We analyze the effect of A on the DRN-S and DRN-L
models for 4 x SR and compare the model performance on Set5.
From Fig. 7(a), when we increase A from 0.001 to 0.1, the dual
regression loss gradually becomes more important and provides
powerful supervision. If we further increase A to 1 or 10, the
dual regression loss term would overwhelm the original primal
regression loss and hamper the final performance. To obtain a
good tradeoff between the primal and dual regression, we set
A = 0.1 in practice for the training of all DRN models.

E. Effect of Hyper-Parameter -y in (5)

We analyze the effect of the hyper-parameter  in (5), which
controls the weight of the dual regression loss on channel
pruning. In particular, we investigate the effect of v on the
three compressed models for 4x SR and compared the model
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Fig.7. Effect of the hyper-parameters A and - on the proposed dual regression
learning and dual regression compression method.

performance on Set5. From Fig. 7(b), the compressed models
perform best when + is set to 1. If we increase or decrease the
hyper-parameter v, the compressed DRN models consistently
yield worse SR performance on Set5. Therefore, we set v = 1
in practice to conduct the channel pruning on our DRN models.

F. Effect of the Design of Dual Models

We compare our DRN with a new baseline method, which
uses more powerful CNN networks as the dual model to pro-
vide the supervision signal from the low-resolution images.
Experimental results in Table VII show that the simple dual
models CNN networks are able to enhance SR performance.
With more powerful dual models, the baseline model achieves
similar improvement in performance. These results demonstrate
that the closed form of our dual regression scheme is the key
reason to boost the SR model training, instead of the design of
the structure of dual models.

G. Effect of the Progressive Dual Models

To investigate the effect of the progressive manner in our
dual regression, we compare the baseline model that uses a
single dual model that directly downsamples the images into
the target resolution without the progressive scheme. As shown
in Table VII, the baseline model without the progressive manner
achieves a comparable performance. This model still achieves
better performance compared with the baseline model without
using the dual regression scheme. Moreover, we also investigate
the effect of our dual regression scheme on transformer-based
models, such as SwinIR [44] and DAT [45]. As shown in Table I,
the models with a single dual model (i.e., DAT-DR) also achieve
a significant improvement over the DAT [45] baseline model
without the dual regression scheme. These results demonstrate
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TABLE VIII
THE EFFECT OF THE DUAL REGRESSION LOSS ON HR DATA FOR 4 x SR

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 46, NO. 12, DECEMBER 2024

Method

| MAdds | Set5 | Seti4 | BSDS100 | Urban100 | Mangal09

DRN-S with dual HR | 51.20G
DRN-S (Ours) 25.60G

32.69
32.68

28.93
28.93

31.54

27.78 31.52

27.79
26.84

26.85

DRN-S is taken as the baseline model.

that the closed-loop formulation of our dual regression scheme
is the key factor for boosting the learning of SR models.

H. Effect of Dual Regression on HR Data

Actually, we can also add a constraint on the HR domain
to reconstruct the original HR images. In this experiment, we
investigate the effect of the dual regression loss on HR data and
show the results in Table VIII. For convenience, we use “DRN-S
with dual HR” to represent the model with the regression on both
LR and HR images. From Table VIII, “DRN-S with dual HR”
yields approximately 2x training cost of the original training
scheme but very limited performance improvement. Thus, we
only apply the dual regression loss to LR data in practice.

VI. CONCLUSION

In this paper, we have proposed a novel dual regression
learning scheme to obtain effective SR models. Specifically, we
introduce an additional constraint by reconstructing LR images
to reduce the space of possible SR mapping functions. With
the proposed learning scheme, we can significantly improve
the performance of SR models. Based on the dual regression
learning scheme, we further propose a lightweight dual regres-
sion compression method to obtain lightweight SR models. We
first present a dual regression channel number search method to
determine the redundancy of each layer. Based on the searched
channel numbers, we then exploit the dual regression scheme to
evaluate the importance of channels and prune those redundant
ones. Extensive experiments demonstrate the superiority of our
method over existing methods.
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