
Neural Networks 138 (2021) 98–109

S
Z
&
v
t
r
2
d
o
s
r

s
q

h
0

Contents lists available at ScienceDirect

Neural Networks

journal homepage: www.elsevier.com/locate/neunet

Towards effective deep transfer via attentive feature alignment
Zheng Xie a,b,1, Zhiquan Wen a,b,1, Yaowei Wang b,1, Qingyao Wu a,∗, Mingkui Tan a,∗

a South China University of Technology, China
b PengCheng Laboratory, China

a r t i c l e i n f o

Article history:
Received 23 June 2020
Received in revised form 17 January 2021
Accepted 25 January 2021
Available online 10 February 2021

Keywords:
Deep transfer
Knowledge distillation
Attention mechanism

a b s t r a c t

Training a deep convolutional network from scratch requires a large amount of labeled data, which
however may not be available for many practical tasks. To alleviate the data burden, a practical
approach is to adapt a pre-trained model learned on the large source domain to the target domain,
but the performance can be limited when the source and target domain data distributions have
large differences. Some recent works attempt to alleviate this issue by imposing feature alignment
over the intermediate feature maps between the source and target networks. However, for a source
model, many of the channels/spatial-features for each layer can be irrelevant to the target task.
Thus, directly applying feature alignment may not achieve promising performance. In this paper,
we propose an Attentive Feature Alignment (AFA) method for effective domain knowledge transfer
by identifying and attending on the relevant channels and spatial features between two domains.
To this end, we devise two learnable attentive modules at both the channel and spatial levels. We
then sequentially perform attentive spatial- and channel-level feature alignments between the source
and target networks, in which the target model and attentive module are learned simultaneously.
Moreover, we theoretically analyze the generalization performance of our method, which confirms
its superiority to existing methods. Extensive experiments on both image classification and face
recognition demonstrate the effectiveness of our method. The source code and the pre-trained models
are available at https://github.com/xiezheng-cs/AFAhttps://github.com/xiezheng-cs/AFA.

© 2021 Elsevier Ltd. All rights reserved.
1. Introduction

Deep convolutional neural networks (CNNs) (He, Zhang, Ren, &
un, 2016; Ronneberger, Fischer, & Brox, 2015; Sandler, Howard,
hu, Zhmoginov, & Chen, 2018; Szegedy, Vanhoucke, Ioffe, Shlens,
Wojna, 2016) have been widely applied in various computer

ision tasks. As a deep model often contains millions of parame-
ers, training a deep convolutional network from scratch usually
equires a large-scale labeled data set (e.g., ImageNet Deng et al.,
009). However, in real-world scenarios, only limited labeled
ata are available due to expensive labeling costs or scarcity
f the data of interest. Fortunately, as a deep model essentially
pans the data into a very high-dimensional space, the feature
epresentations derived from a model (i.e., the source model) pre-
trained on a large-scale source data set can be transferred to the
related target tasks (Yosinski, Clune, Bengio, & Lipson, 2014).

Fine-tuning is a direct method for deep transfer, and it seeks to
obtain a target model by directly retraining the source model on

∗ Corresponding authors.
E-mail addresses: sexiezheng@mail.scut.edu.cn (Z. Xie),

ewenzhiquan@mail.scut.edu.cn (Z. Wen), wangyw@pcl.ac.cn (Y. Wang),
yw@scut.edu.cn (Q. Wu), mingkuitan@scut.edu.cn (M. Tan).
1 Equal contribution.
ttps://doi.org/10.1016/j.neunet.2021.01.022
893-6080/© 2021 Elsevier Ltd. All rights reserved.
the target data. However, the performance is limited due to the
discrepancy between the source and target domain data distribu-
tions. This issue will be even more severe when the labeled target
data are limited. In the last several years, several advanced deep
transfer techniques have been proposed to alleviate the domain
discrepancy issue. Specifically, L2-SP (Li, Grandvalet, & Davoine,
2018) regularized the parameters between the two networks
to encourage the target network to be similar to the source
network. However, simply using regularization may not achieve
promising transfer performance. In particular, if the regulariza-
tion is too weak or too strong, it shall hamper the generalization
performance (Li, Xiong, et al., 2019). Zhao et al. (2019) proposed
Soft Fine-tuning to maintain general discrimination by holding
the previous loss and removing it softly. However, this method
requires the source data, which often are unavailable.

More recently, motivated by the knowledge distillation
paradigm (Romero, Ballas, et al., 2015), Li et al. (2019) proposed
a method called DELTA, which attempted to align the feature
maps with a channel attention mechanism. However, DELTA has
two main limitations. First, it considers only the transferability
of features at the channel level but ignores the redundancy in
the spatial regions of the feature maps. In fact, since the target
domain and source domain are often different, the feature maps
generated by the source model may have considerable redundant
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nformation (such as the background) to the target task, which
ay affect transfer performance. Second, in DELTA, the channel
ttention is pre-learned and fixed for all samples when updating
he target model. Since the true informative channels may vary
or different samples, the shared attention across samples may be
uboptimal for deep transfer.
Note that each layer of a deep model often contains many

hannels and produces many feature maps. As the target domain
s often, to some extent, different from the source domain, not all
he channels are relevant or informative for the discriminative
ower in the target domain. Moreover, such a redundancy issue
lso exists in the spatial regions of the feature maps. There-
ore, when performing transfer learning with deep convolutional
etworks, it is important to identify and exclude irrelevant infor-
ation and focus more on the informative channels and spatial

eatures for each sample. Based on this intuition, in this paper, we
ropose a simple but effective method named Attentive Feature
lignment (AFA) to align the relevant feature maps at both the
patial and channel levels. In particular, we exploit the atten-
ion mechanism and devise learnable attentive modules at both
he channel and spatial levels. Moreover, we propose a two-
tage training scheme in which we sequentially conduct attentive
patial- and channel-level feature alignments between the source
nd target networks. Note that we simultaneously train the target
odel and the corresponding attentive module by minimizing
ttentive feature alignment loss and cross-entropy loss in each
tage.
Our main contributions are summarized as follows:

• We propose an Attentive Feature Alignment (AFA) method,
which seeks to identify the relevant information between
the source and target domains at both the channel and spa-
tial levels in the feature maps. By attending and performing
matching over relevant features, AFA is able to well match
two domains and ensures better deep transfer.
• Different from existing attention-based methods relying on

pre-learned attentive modules, we devise learnable atten-
tive channel and spatial modules to identify relevant
features between the source and target domains for each
sample.
• We theoretically analyze the generalization performance of

our proposed method, which confirms its superiority. More-
over, extensive experiments on both image classification
and face recognition demonstrate the effectiveness of our
method compared with several state-of-the-art methods.

. Related work

.1. Transfer learning

Transfer learning (Caruana, 1997; Gligic, Kormilitzin, Goldberg,
Nevado-Holgado, 2020; Nahmias, Cohen, Nissim, & Elovici,

020; Pan & Yang, 2009; Raghu, Sriraam, Temel, Rao, & Kubben,
020) aims to transfer knowledge across related tasks. It has sev-
ral different scenarios, such as domain adaptation (Deng, Dong,
iu, Wang, & Men, 2019; Saenko, Kulis, Fritz, & Darrell, 2010; Yang
Zhong, 2020; Zhang et al., 2019; Zhu et al., 2019), multi-task

earning (Caruana, 1997; Dorado-Moreno et al., 2020), continual
earning (Kirkpatrick, Pascanu, et al., 2017; Li & Hoiem, 2017), and
o forth. Yosinski et al. (2014) argued that the feature representa-
ions derived from the source task are transferable to the related
arget tasks. Recently, various approaches have been proposed
o promote the development of transfer learning, such as sparse
ransfer (Liu et al., 2017), filter distribution constraining (Aygun,
ytar, & Kemal Ekenel, 2017) and filter subset selection (Cui,
ong, Sun, Howard, & Belongie, 2018; Ge & Yu, 2017). Specifically,
i and Hoiem (2017) proposed the learning without forgetting
99
(LwF) method, which used the target data to retrain networks
while preserving the capabilities of the source task. Inspired by
LwF, L2-SP (Li et al., 2018) regularized the parameters between
the two networks to encourage the target network to be similar
to the source network. Zhao et al. (2019) proposed the Soft Fine-
tuning method to maintain general discrimination by holding
the previous loss and removing it softly. Different from L2-SP ,
Li et al. (2019) proposed DELTA to impose alignment on the
feature maps with a channel attention mechanism but ignored
the redundancy in the spatial regions of features. In addition, all
samples shared the same pre-learned and fixed attention weights,
which may be suboptimal for deep transfer. In this paper, our AFA
imposes feature alignment considering the redundancy at both
the channel and spatial levels. Moreover, we devise learnable
attentive modules to recognize the relevant features between
the source and target domains, where each sample has a unique
attention weight.

2.2. Knowledge distillation

Knowledge distillation (KD) (Ba & Caruana, 2014) is widely
used to transfer knowledge from a teacher network to a small
student network. The original idea of KD is to force the output
distribution of a student network to mimic that of a teacher
network (Hinton, Vinyals, & Dean, 2015). Furthermore, several
methods have been proposed to transfer the knowledge from a
teacher network to a student network by aligning the feature
maps derived from intermediate layers (Romero et al., 2015;
Zhuang et al., 2018). Zhuang et al. (2018) adopted feature align-
ment to perform channel pruning and obtained a well-performing
pruned model. Recently, several methods (Chen, Wang, & Zhang,
2018b; Yim, Joo, Bae, & Kim, 2017; Zhang & Peng, 2018) have
been proposed to improve the performance of student networks.
Specifically, Chen et al. (2018b) considered the relationship be-
tween different samples and then made use of the similarities
across samples to improve the performance of student networks.
Moreover, many studies have adopted KD to achieve a better
transfer performance (Huang, Peng, & Yuan, 2017). For example,
to transfer knowledge across several tasks, the source and target
networks are regarded as teachers and students respectively (Yim
et al., 2017; Zagoruyko & Komodakis, 2017). In this paper, we
adopt the concept of feature alignment in KD to perform deep
transfer. Note that feature alignment in KD is to transfer the
knowledge learned from the large teacher network to the small
student network, where the two networks focus on the same
task and domain. However, in deep transfer, the source and
target networks are usually the same network and often focus on
different domains. In this way, we seek to adopt this paradigm to
effectively transfer relevant knowledge from the source domain
to the target domain.

2.3. Attention mechanism

The attention mechanism (Bahdanau, Cho, & Bengio, 2015;
Luong, Pham, & Manning, 2015; Vaswani et al., 2017; Xu et al.,
2015) has promoted the development of various tasks, such as
image classification (Hu, Shen, & Sun, 2018; Wang, Girshick,
Gupta, & He, 2018; Woo, Park, Lee, & Kweon, 2018; Xie et al.,
2020; Zhu, Li, Yang, & Ye, 2020), semantic segmentation (Chen,
Yang, Wang, Xu, & Yuille, 2016; Fu et al., 2019), natural language
processing (Vaswani et al., 2017; Yang et al., 2020) and human
trajectory prediction (Fernando, Denman, Sridharan, & Fookes,
2018). To be specific, SENet (Hu et al., 2018) assigned different
weights to different channels with an attention mechanism to
promote the development of image classification and object de-
tection. Wang et al. (2018) proposed a non-local block embedded



Z. Xie, Z. Wen, Y. Wang et al. Neural Networks 138 (2021) 98–109

w
c
a
a
C
t
a
m
m
t
V
n
f
t
c
e
b
w
i
t
i
p
d
e

3

w
t
t
f
o
W
a

o
d
k
p

M
m

w
ith an attention mechanism to effectively capture pixel-wise
ontextual information. CBAM (Woo et al., 2018) sequentially
ssigned intermediate feature maps channel- and spatial-level
ttention weights for adaptive feature refinement. In addition,
hen et al. (2016) adopted an attention mechanism to identify
he importance of different scales of the feature maps, and then
ggregated them with different attention weights to improve seg-
entation performance. Fu et al. (2019) employed a self-attention
echanism in both channel and spatial levels parallelly to cap-

ure contextual dependencies in scene segmentation. Moreover,
aswani et al. (2017) proposed a simple but effective network
amed Transformer which adopted a self-attention mechanism
or machine translation. In this paper, we investigate the atten-
ion mechanism and devise two learnable attentive modules fo-
using on the channel and spatial levels. Specifically, CBAM (Woo
t al., 2018) and DANet (Fu et al., 2019) also considered two levels
ut embedded the two-level attentive modules into networks,
hich introduces additional parameters and computational cost

n both the training and inference phase. In contrast, our atten-
ive modules are only adopted in the training phase, and thus
ntroduces no additional computational overhead in the inference
hase. Moreover, the architecture of our attentive module is
ifferent from that in CBAM (Woo et al., 2018) and DANet (Fu
t al., 2019) because these methods focus on different tasks.

. Problem definition and motivations

Let D = {(xi, yi)}Ni=1 be the training data for the target task,
here N is the number of samples. In many real-world applica-
ions, we may not have sufficient labeled target data. Moreover,
he data distributions of the source and target domains are dif-
erent. Fortunately, we may have a pre-trained source model Ms
btained on some related large-scale data set (e.g., ImageNet).
ithout loss of generality, Mt denotes the target model. Let Ws

nd Wt be the parameters of the source and target networks,
respectively. Note that we may need to build new classifiers w.r.t.
the target task by introducing new FC layers with new parameters
WFC

t . Let f (xi,Wt ) be the prediction of Mt .
The task of deep transfer is to obtain a promising target model

Mt for the target domain by effectively exploiting Ms and the
limited data in D. A direct method for deep transfer is to fine-
tune the model w.r.t. Wt by minimizing a regularized objective
(with Wt being warm-initialized based on Ws) (Li et al., 2018):

N∑
i=1

L(f (xi,Wt ), yi)+ γR(Wt ) , (1)

where L(·, ·) refers to the loss function (e.g., cross-entropy loss
function), R(Wt ) is a regularizer (e.g., 1

2∥Wt∥
2
F) and γ is a trade-

ff parameter. From Eq. (1), the direct fine-tuning based approach
oes not effectively exploit Ms, and hence it can easily lose useful
nowledge learned from the source domain, leading to limited
erformance (Li et al., 2018).
A feasible approach to effectively exploit the knowledge in

s is to impose feature alignment on the intermediate feature
aps between Ms and Mt . Typically, it minimizes the following

objective w.r.t. Wt :
N∑
i=1

(L(f (xi,Wt ), yi)+ αΩ(Wt ,Ws, xi))+ γR(Wt ) , (2)

where Ω(Wt ,Ws, xi) denotes the feature alignment loss regard-
ing sample xi, and α is a trade-off parameter. Intuitively,
Ω(Wt ,Ws, xi) can be defined as the distance between the inter-
mediate feature maps derived from Ms and Mt :

Ω(Wt ,Ws, xi) =
1
∥F(xi,Wt )− F(xi,Ws)∥2 , (3)
2 F

100
here F(·, ·) denotes the feature maps generated from some
layers of a network and ∥ · ∥F denotes the F-norm. By minimizing
Ω(Wt ,Ws, xi), the knowledge in Ms is expected to be retained in
Mt . For convenience, we denote this paradigm as direct feature
alignment without attention (DFA).

Note that the DFA paradigm has been extensively studied in
knowledge distillation (KD) (Romero et al., 2015; Zagoruyko &
Komodakis, 2017), where Ms and Mt often focus on the same
task and domain. However, in deep transfer, the target domain
is often different from the source domain. Consequently, some
channels can be irrelevant or redundant to new task learning.
More critically, such redundancy issues inevitably exist in the
spatial regions of the feature maps. Thus, directly applying the
DFA paradigm for deep transfer may not obtain promising per-
formance. In the following section, we will address these issues
by devising an Attentive Feature Alignment (AFA) paradigm for
effective deep transfer.

4. Proposed method

Motivated by the attention mechanism (Xu et al., 2015), we
devise two learnable attentive modules to identify the relevant
features between the source and target domains at both the
channel and spatial levels. The general scheme of our method is
shown in Fig. 1. For convenience, we relegate the details of each
module to the following subsections.

With the introduction of attentive modules, we perform deep
transfer and optimize Wt and attention parameters Wa by mini-
mizing the attentive objective below:

N∑
i=1

(L(f (xi,Wt ), yi)+ αΩA(Wt ,Ws,Wa, h, xi))+ γR(Wt ) , (4)

where h is an attention function and ΩA (with A ∈ {C, S}) denotes
the attentive feature alignment (AFA) loss. Here, we consider
attention at both the channel level (A = C) and the spatial level
(A = S), which are designed to capture the true useful informa-
tion at the two levels. With our attentive modules, the relevant
features between two domains obtain higher concentrations in
feature alignment. In this way, these true informative features can
be transferred to the target domain.

Note that directly optimizing the two-level attentions simulta-
neously (i.e., the one-stage AFA) may incur the following training
difficulties. First, the channel and spatial attentions parameters
are needed to be optimized simultaneously. Second, the two-
level attentions may interfere with each other during the training
process of the one-stage AFA due to the following possible rea-
sons. Specifically, since channel features are composed of spatial
features, the channel and spatial attentions are closely entangled.
In the one-stage AFA, in general, we first apply one forward prop-
agation to update features and losses, and then update the model
parameters of the spatial and channel attentions subsequently.
However, once we update the parameters of the spatial attention,
it will affect the channel features and thus the gradient of the
channel attention can be outdated, which may incur the sub-
optimal solutions (For more details, please see Section 5.5.4).
Thus, we apply the attentive feature alignment in a two-stage
training scheme. The overall algorithm called Attentive Feature
Alignment (AFA) in Algorithm 1, where Ws

a and Wc
a denote the

spatial- and channel-level attentions parameters, respectively.
Here, we first consider deep transfer at the spatial level (Called
attentive spatial transfer (AST)) and then conduct deep transfer at
the channel level (Called attentive channel transfer (ACT)). More-
over, to prevent obtaining incorrect guidance from the source
model, we initialize the source model based on the target model
trained in AST before performing ACT (For more details, please

refer to Sections 4.3 and 5.5.7).
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Fig. 1. Overview of the framework of our proposed method. The left part is the framework and the right part is the architecture of attentive modules for two stages.
denotes element-wise multiplication; ⊖ denotes element-wise subtraction; the AFA loss is the attentive feature alignment loss, and the CE loss is the cross-entropy

oss. Note that we evenly take feature maps of four intermediate layers for alignment.
p

Algorithm 1 Attentive Feature Alignment for Deep Transfer
Input: A pre-trained source model Ms, target training data
{(xi, yi)}Ni=1 and the number of epochs T .
utput: A trained target model Mt .
1: // Stage I
2: Let Mt ← Ms and randomly initialize Ws

a.
3: for τ = 1, . . . , T/2 do
4: Update Wt and Ws

a via Attentive Spatial Transfer.
5: end for
6: // Stage II
7: Let Ms ← Mt and randomly initialize Wc

a.
8: for τ = 1, . . . , T/2 do
9: Update Wt and Wc

a via Attentive Channel Transfer.
10: end for

4.1. Attentive spatial transfer

The feature maps derived from the source model may contain
onsiderable irrelevant information for the target domain. We
hus devise the Spatial Attentive Module (SAM) to focus on the
nformative spatial regions of the feature maps. To this end, it
irst averages the feature maps in the channel dimension and
hen adopts a two-layer perceptron MLPs with a softmax layer to
ssign the attention weight to the spatial regions. The details of
LPs are shown in Table 1. Based on SAM, the attention weights
i for the ith sample are computed by

i
= hs(xi,Ws

a) = softmax(MLPs(AvgPooling(g(F(xi,Ws))),Ws
a)) ,

(5)

here hs is a spatial-level attention function; F(·, ·) denotes
he feature maps derived from some layers of a network; g(·):
C×H×W

→ RC×(HW ) flattens the feature maps in the spatial di-
ension; AvgPooling(·): RC×(HW )

→ R1×(HW ) averages the feature
aps in the channel dimension, where H , W , C are the height,

width, and number of channels of the feature maps, respectively;
and Ws

a is the parameters of MLPs.
We then assign the spatial attention values Ai to the pixel-

wise differences between the two feature maps, leading to a
spatial-level attentive feature alignment loss:

ΩS(Wt ,Ws,Ws
a, hs, xi)

=

H∑
j=1

W∑
k=1

∥Ai
j,k(Fj,k(xi,Wt )− Fj,k(xi,Ws))∥2F .

(6)

By minimizing Eq. (6), AST forces the feature alignment of the
target modelMt over the informative spatial regions to the source
model Ms for attentive spatial transfer. Note that since the soft-
max function is used to normalize the attention weights A in
101
Table 1
Structure of the MLPs. Here, H , W , C are the height, width, and the number of
channels of the input feature maps, respectively. FC denotes the fully connected
layer.
MLP Input dimension Operator Output dimension

MLPs
HW FC+ReLU H
H FC HW

MLPc
(HW )× C FC+ReLU H × C
H × C FC C

Eq. (5), Aj,k in Eq. (6) will be in the interval (0, 1) and all attention
weights will add up to 1. In this sense, not all attention weights
are close to 0. Thus, the trivial solution (A = 0) will not happen.

4.2. Attentive channel transfer

Apart from paying attention to the important spatial features,
a Channel Attentive Module (CAM) is proposed to focus on the
informative channels of the feature maps. Similar to AST, we use
a two-layer perceptron MLPc with a softmax layer to identify the
informative channels. The details of MLPc are shown in Table 1.
Based on CAM, the attention weight vector ai for the ith sample
can be formulated as

ai = hc(xi,Wc
a) = softmax(MLPc(g(F(xi,Ws)),Wc

a)) , (7)

where hc is a channel-level attention function andWc
a denotes the

arameters of MLPc . We align channel features by minimizing the
channel-level attentive feature alignment loss:

ΩC (Wt ,Ws,Wc
a, hc, xi) =

C∑
j=1

aij∥Fj(xi,Wt )− Fj(xi,Ws)∥2F . (8)

By minimizing Eq. (8), ACT aligns the informative channels of the
target model Mt with that of the source model Ms for attentive
channel transfer.

Note that the recently proposed DELTA (Li et al., 2019) method
only considers the redundancy issue in channels and adopts a
similar approach to ACT. Moreover, in DELTA, the channel atten-
tion is pre-learned and fixed for all samples when updating the
target model, while in our method, each sample has a unique
attention weight matrix/vector. Last, our method updates Wt and
Wa simultaneously, which is different from DELTA.

4.3. Algorithm details

As shown in Algorithm 1, we adopt a two-stage scheme to
train the target network. In Stage I, we perform AST to conduct

deep transfer at the spatial level. In Stage II, we initialize the
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ource model based on the target model trained in Stage I for the
ncremental training and then perform ACT. If we preserve the
riginal source model (e.g., pre-trained on ImageNet) to conduct
tage II, the original source model may provide the incorrect
nitial guidance to the target model. The reason is that for the
arget domain, the target model trained in Stage I has better
erformance than the original source model. Due to this limi-
ation, we replace the original source model in Stage II. Note
hat for each stage of AFA, we apply mini-batch SGD to optimize
he target model parameters Wt and attention parameters Wa by
inimizing the objective in Eq. (4).

.4. Training and inference complexity

The training cost of our AFA is close to the existing meth-
ds (e.g., DELTA) since our attentive modules only introduce a
mall number of parameters (See Table 6). In other words, the
dditional parameters of our attentive modules do not greatly
ncrease the training burden. But if adding too many attentive
odules to the target model, it will hamper the transfer perfor-
ance and increase the training time in each epoch (For more
etails, please refer to Section 5.5.8). In practice, introducing
p to four attentive modules is sufficient and is able to im-
rove the performance. Thus, the increased training complexity
s acceptable.

In the inference phase, our AFA does not need to consider the
ttentive modules since it only participates in the training phase.
herefore, given the same network, the target model trained by
ur AFA has the same inference cost as that trained by other
xisting deep transfer methods (such as L2-SP , Li et al., 2018
nd DELTA, Li et al., 2019), and achieves better performance (See
able 3).

.5. Differences between AFA and DELTA

Our AFA differs from DELTA in several aspects: (1) DELTA
onsiders only the redundancy at the channel level but ignores
otential redundancy at the spatial level, while AFA considers the
edundancy at both the channel and spatial levels. (2) In DELTA,
he channel attention is pre-learned and fixed for all samples.
ince the relevant channels may vary for different samples, the
hared attention across samples shall be suboptimal for deep
ransfer. In AFA, we devise two kinds of learnable attentive
odules, each of which provides a unique attention weight for
ach sample. (3) The experimental results show that our AFA
utperforms DELTA in terms of Top-1 accuracy on five public
lassification data sets (See Table 3).

.6. Theoretical analysis

In this section, we analyze the generalization bound of our AFA
aradigm to measure the generalization performance on unseen
est data. First, we introduce some definitions of the expected loss
nd Rademacher complexity to analyze our proposed method.

efinition 1. Given functions f ∈ F and h ∈ H for our AFA
aradigm, where F and H are function spaces, the expected loss
an be defined as:

(f , h) = E[L(f (x), y)+ αΩ(Wt ,Ws,Wa, h, x)] . (9)

rom Definition 1, our aim is to learn the functions f and h
uch that the expected loss on unseen test data can be small. In
ractice, given N training samples, the goal of our AFA paradigm
s to minimize the empirical loss, which can be defined as follows:

ˆ (f , h) =
1
N

N∑
L(f (xi), yi)+ αΩ(Wt ,Ws,Wa, h, xi) . (10)
i=1

102
To achieve good generalization performance, the empirical loss
can be minimized to be small such that the expected loss can
also be small. To this end, following Mohri, Rostamizadeh, and
Talwalkar (2012), we define the Rademacher complexity of our
AFA paradigm as follows.

Definition 2 (Rademacher Complexity of AFA). Given an underly-
ing distribution Z and its empirical distribution S = {z1, z2, . . . ,
N}, where zi = (xi, yi). Then the Rademacher complexity of our
FA paradigm is defined as:

AFA
N (Φ) = ES

[
R̂S(f , h)

]
, ∀f ∈ F, h ∈ H , (11)

here F and H are function spaces, Φ ∈ F × H, and R̂S(f , h) is
he empirical Rademacher complexity. R̂S(f , h) is defined as:

R̂S(f , h)

= Eσ

[
sup

(f ,h)∈Φ

1
N

N∑
i=1

σi(L(f (xi), yi)+ αΩ(Wt ,Ws,Wa, h, xi))

]
,

(12)

where σ = [σ1, . . . , σN ] are independent uniform random vari-
ables valued in {−1,+1}.

From Definition 2, the Rademacher complexity captures the ca-
pacity of a family of functions f and h by measuring how they
fit random noises. Based on Definitions 1 and 2, we derive a
generalization bound of our AFA paradigm as follows:

Theorem 1 (Generalization Performance of AFA). Let L(f (x), y) +
Ω(Wt ,Ws,Wa, h, x) be a mapping from X×Y to [0,U] with
pper bound U and the function space Φ be infinite. For any δ > 0,
ll (f , h)∈Φ , with probability at least 1−δ, the generalization error
(f , h), i.e., the expected loss, satisfies

(f , h) ≤ Ê(f , h)+ 2RAFA
N (Φ)+ U

√
1
2N

log
(
1
δ

)
, (13)

here RAFA
N is the Rademacher complexity of our AFA paradigm. Let

(f , h) be the generalization bound of AFA, i.e., B(f , h) = 2RAFA
N (Φ)+√

1
2N log

( 1
δ

)
, we thus have

B(f , h) ≤ B(f ) , (14)

here f ∈ Φ , B(f ) is the generalization bound of the direct feature
lignment without attention (DFA) paradigm w.r.t. the Rademacher
omplexity RDFA

N (Φ).

roof. See Appendix for the detailed proof.

This theorem shows the generalization bound of our AFA
aradigm, which relies on the Rademacher complexity of a func-
ion space Φ . From Theorem 1, our AFA paradigm has a smaller
eneralization bound than the DFA paradigm, which helps to
chieve better generalization performance. To justify this, we
urther conduct experiments in Section 5.5.1. The results in Fig. 3
emonstrate that our AFA paradigm has smaller test loss and
ross-entropy loss than the DFA paradigm. Therefore, our AFA
aradigm achieves better generalization performance than the
FA paradigm. For further discussion, please refer to Remark 1.

emark 1. Based on the definition of the Rademacher complex-
ty, the capacity of function space Φ ∈ F×H is smaller than that
f function space Φ ∈ F in the DFA paradigm, i.e., RAFA

N ≤ RDFA
N ,

here RDFA
N is the Rademacher complexity of the DFA paradigm.

n other words, the generalization bound of our AFA paradigm
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able 2
haracteristics of the target data sets: the name, number of classes, and number
f samples in the training set and validation set.
Target data sets # Classes # Training samples # Validation samples

MIT Indoors 67 67 5,360 1,340
Stanford Dogs 120 120 12,000 8,580
Caltech 256–30 257 7,710 5,140
Caltech 256–60 257 15,420 5,140
CUB-200–2011 200 5,994 5,794

is smaller than that of the DFA paradigm. Thus, compared with
the DFA paradigm, our proposed AFA paradigm is able to achieve
better generalization performance.

5. Experiments on image classification

5.1. Source and target data sets

For the image classification task, we choose two large-scale
ata sets as the source data, namely, ImageNet (Deng et al.,
009) for object classification and Places 365 (Zhou, Lapedriza,
hosla, Oliva, & Torralba, 2017) for scene classification. The small-
cale target data sets are five public data sets with different do-
ains: MIT Indoor 67 (Quattoni & Torralba, 2009), Stanford Dogs
20 (Khosla, Jayadevaprakash, Yao, & Li, 2011), Caltech-UCSD
irds-200-2011 (CUB-200-2011) (Wah, Branson, Welinder, Per-
na, & Belongie, 2011), Caltech 256-30 and Caltech 256-60 (Grif-
in, Holub, & Perona, 2007). We show the details of these target
ata sets in Table 2. Note that the target data set MIT Indoor
7 corresponds to the source data set Places 365 and the rest of
he target data sets correspond to the source data set ImageNet.
esides, for a fair comparison, we pre-process these data sets fol-
owing DELTA (Li et al., 2019). For ResNet-101 and MobileNetV2,
e first resize input images to 256 × 256, and then process them
o 224 × 224. For Inception-V3, we first resize input images to
20 × 320, and finally crop them to 299 × 299. Note that we use
ata augmentation operations of random flip and random crop
or all networks.

.2. Implementation details

We use ResNet-101 (He et al., 2016), Inception-V3 (Szegedy
t al., 2016) and MobileNetV2 (Sandler et al., 2018) as base
etworks. For fair comparisons, we follow experimental settings
n DELTA2 (Li et al., 2019). We take pre-trained models from
orchvision3 or CSAILVision4 as source models. We use mini-
atch SGD with a mini-batch size of 64 for optimization, where
he momentum term is set to 0.9. Moreover, the number of
raining iterations is 9k, and the learning rate is divided by 10
t the 6kth iteration. The initial learning rates of ResNet-101
nd MobileNetV2 are 0.01, while that for Inception-V3 is 0.001.
oreover, for the LwF and Soft Fine-tuning, the initial learning

ate of the three networks is 0.001. For each stage of our AFA,
he number of training iterations is 4.5k. In stage I of our AFA,
he learning rate is divided by 10 at the 3kth iteration. In stage II,
he initial learning rate is the same as the decayed learning rate
f stage I. Then, the learning rate of stage II is divided by 10 at
he 3kth iteration. For the hyper-parameters α and γ in Eq. (4),
e follow the experimental settings of DELTA (Li et al., 2019)
nd L2-SP (Li et al., 2018). Then, we fix γ to 0.01 and use cross-
alidation to search for the best α for each experiment. Note that

2 https://github.com/lixingjian/DELTA
3 https://pytorch.org/docs/stable/torchvision/index.html
4 https://github.com/CSAILVision/places365
103
Fig. 2. Visualization of the activation maps of the channels of the block
conv5_2 in ResNet-101 for various methods. Examples are taken from the
target validation set of Stanford Dogs 120 and CUB-200-2011. Source model:
ResNet-101 pre-trained on ImageNet.

for all networks, we take the feature maps from four intermediate
layers evenly for feature alignment. The compared methods are
L2, L2-FE, L2-SP (Li et al., 2018), LwF (Li & Hoiem, 2017), Soft Fine-
uning (Soft FT) (Zhao et al., 2019) and DELTA (Li et al., 2019). We
epeat each experiment five times to report the average Top-1
ccuracy and the standard deviation.

.3. Comparisons with state-of-the-art methods

.3.1. Quantitative evaluation
We report the results of our AFA and other compared methods

n Table 3. From these results, we have the following observa-
ions. First, the four compared methods (L2-SP , LwF, Soft Fine-
uning and DELTA) outperform the naïve L2 and L2-FE baselines
ith higher accuracy in most experiments. Second, our AFA
chieves much better performance than all the compared meth-
ds in three networks on five public image classification data sets.
pecifically, for ResNet-101, our AFA outperforms the state-of-
he-art method DELTA by 1.7% on CUB-200-2011. For Inception-
3, our AFA surpasses DELTA by 2.9% on Stanford Dogs 120.
oreover, for MobileNetV2, our AFA exceeds DELTA by 1.5% on
IT Indoors 67. These results demonstrate the superiority of
ur AFA for the image classification task. Third, the state-of-the-
rt method DELTA outperforms L2-SP by 0.5% ∼ 1.5% on five
ublic data sets. Our AFA surpasses L2-SP by 1.0% ∼ 3.0%, and
utperforms DELTA by 0.5% ∼ 2.0%. In this sense, compared with
he state-of-the-art method DELTA, the improvements of our AFA
re significant.

https://github.com/lixingjian/DELTA
https://pytorch.org/docs/stable/torchvision/index.html
https://github.com/CSAILVision/places365
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able 3
omparisons of different methods in terms of Top-1 accuracy (%) on five public classification data sets. Compared methods: L2 , L2-FE, L2-SP (Li et al., 2018), LwF (Li

& Hoiem, 2017), Soft Fine-tuning (Soft FT) (Zhao et al., 2019) and DELTA (Li et al., 2019). L2-FE: Using the pre-trained model as a feature extractor.
ResNet-101 L2 L2-FE L2-SP LwF Soft FT DELTA AFA (Ours)

MIT Indoors 67 83.7 ± 0.3 80.4 ± 0.2 85.1 ± 0.1 83.9 ± 0.2 84.6 ± 0.3 85.5 ± 0.3 85.9 ± 0.1
Stanford Dogs 120 83.3 ± 0.2 84.7 ± 0.1 88.3 ± 0.2 89.4 ± 0.1 88.3 ± 0.1 88.7 ± 0.1 90.1 ± 0.0
Caltech 256–30 84.7 ± 0.3 82.9 ± 0.2 85.4 ± 0.2 85.7 ± 0.1 86.3 ± 0.1 86.6 ± 0.1 87.2 ± 0.1
Caltech 256–60 87.2 ± 0.3 85.3 ± 0.2 87.2 ± 0.1 88.2 ± 0.1 88.5 ± 0.1 88.7 ± 0.1 89.4 ± 0.1
CUB-200–2011 78.4 ± 0.1 61.5 ± 0.1 79.5 ± 0.1 79.5 ± 0.1 78.2 ± 0.3 80.5 ± 0.1 82.2 ± 0.1

Inception-V3 L2 L2-FE L2-SP LwF Soft FT DELTA AFA (Ours)

MIT Indoors 67 74.8 ± 0.4 74.9 ± 0.2 74.6 ± 0.4 76.8 ± 0.3 76.2 ± 0.7 78.1 ± 0.4 79.3 ± 0.1
Stanford Dogs 120 88.6 ± 0.2 84.1 ± 0.1 89.4 ± 0.1 88.8 ± 0.2 89.2 ± 0.2 88.7 ± 0.1 91.6 ± 0.1
Caltech 256–30 83.6 ± 0.3 82.5 ± 0.2 83.3 ± 0.2 84.1 ± 0.1 84.5 ± 0.1 84.9 ± 0.2 85.6 ± 0.1
Caltech 256–60 85.8 ± 0.3 84.1 ± 0.1 85.3 ± 0.1 86.4 ± 0.1 86.5 ± 0.1 86.8 ± 0.1 87.6 ± 0.1
CUB-200–2011 74.3 ± 0.2 57.6 ± 0.1 75.2 ± 0.1 76.1 ± 0.2 76.5 ± 0.2 76.5 ± 0.1 77.1 ± 0.1

MobileNetV2 L2 L2-FE L2-SP LwF Soft FT DELTA AFA (Ours)

MIT Indoors 67 76.0 ± 0.2 65.0 ± 0.4 75.7 ± 0.5 76.6 ± 0.4 73.3 ± 0.7 77.1 ± 0.3 78.6 ± 0.1
Stanford Dogs 120 75.5 ± 0.2 78.3 ± 0.2 81.1 ± 0.1 80.6 ± 0.1 79.9 ± 0.1 81.3 ± 0.1 82.1 ± 0.1
Caltech 256–30 78.5 ± 0.2 77.8 ± 0.3 81.0 ± 0.3 80.5 ± 0.2 80.8 ± 0.2 81.2 ± 0.1 81.9 ± 0.1
Caltech 256–60 80.8 ± 0.1 80.9 ± 0.1 83.0 ± 0.1 82.7 ± 0.1 82.8 ± 0.1 83.3 ± 0.1 83.9 ± 0.1
CUB-200–2011 77.3 ± 0.2 57.5 ± 0.2 76.5 ± 0.4 75.8 ± 0.4 73.4 ± 0.2 77.1 ± 0.3 77.6 ± 0.1
Table 4
Effect of attentive modules in terms of Top-1 accuracy (%) of ResNet-101 on five public classification data sets. Here,
DFA denotes direct feature alignment without attention for deep transfer.
ResNet-101 w/o Attention (DFA) AST only ACT only AFA (Ours)

MIT Indoors 67 85.3 ± 0.2 85.6 ± 0.2 85.6 ± 0.2 85.9 ± 0.1
Stanford Dogs 120 88.3 ± 0.2 90.1 ± 0.1 90.1 ± 0.1 90.1 ± 0.0
Caltech 256–30 85.7 ± 0.3 86.9 ± 0.1 87.0 ± 0.1 87.2 ± 0.1
Caltech 256–60 87.6 ± 0.2 89.2 ± 0.1 89.4 ± 0.1 89.4 ± 0.1
CUB-200–2011 78.9 ± 0.1 81.7 ± 0.1 81.7 ± 0.3 82.2 ± 0.1
5.3.2. Qualitative evaluation
To further demonstrate the superiority of our AFA, following

ELTA, we visualize the activation maps of L2-SP , DELTA and our
AFA in Fig. 2. The activation maps of various methods are shown
in each column, which are taken from the same channel of a block
(i.e., conv5_2) in ResNet-101. In addition, the first row presents
the visualization results of ResNet-101 pre-trained on ImageNet.

As shown in Fig. 2 (a) and (c), some activation maps of the
source ResNet-101 (pre-trained on ImageNet) are able to ap-
proximately cover the target object regions. Our AFA identifies
these relevant and informative feature maps between the source
and target domains, and then aligns them well. However, L2-SP
nd DELTA fail to focus on the target object. As shown in Fig. 2
b) and (d), some activation maps of the source ResNet-101 are
nable to cover the target object regions. Nevertheless, our AFA
ignificantly improves these activation maps to focus on the
arget object. In a word, these visualization results show that our
FA achieves obviously better concentration on the target objects
han L2-SP and DELTA, which verifies our motivations and further
demonstrates the effectiveness of our AFA.

5.4. Ablation studies

To evaluate our attentive modules, we conduct experiments
n ResNet-101 with and without attentive modules. Note that
FA means directly using feature alignment without attention for
eep transfer. From the results in Table 4, we have the following
bservations. First, our AST and ACT achieve much better perfor-
ance than DFA, which shows the effectiveness of our spatial
nd channel attentive modules for deep transfer. Second, the
erformance of our AFA is better than that of AST and ACT. These
esults demonstrate that our two-stage AFA further improves the
erformance. In addition, the state-of-the-art DELTA method (See
able 3) outperforms DFA in terms of the Top-1 accuracy by
pproximately 1.0%. Our AFA surpasses DELTA by approximately
.5% ∼ 2.0%. Thus, compared with the state-of-the-art method
ELTA, the improvements of our AFA are significant.
104
5.5. More discussions

5.5.1. Analysis of our AFA and the DFA paradigm
To evaluate our AFA and the DFA paradigms, we show several

loss curves in Fig. 3. From Fig. 3, we have the following observa-
tions. First, as the training epoch increases, all the methods are
guaranteed to converge. Second, our AFA paradigm (i.e., AST, ACT
and AFA) has lower testing losses than the DFA paradigm (i.e., DFA
and DELTA). Specifically, compared to the DFA paradigm, our
AFA paradigm has a smaller cross-entropy loss in testing, which
means better generalization performance for the target model
(See more results in Tables 3 and 4). Both the theoretical analy-
sis (See Section 4.6) and these results demonstrate the effective-
ness of our AFA paradigm.

5.5.2. Differences among DELTA, ACT and AST
In this section, we discuss the differences among DELTA, ACT

and AST in detail. DELTA considers the redundancy at the channel
level and then adopts feature alignment with pre-learned and
fixed channel attention. However, the shared attention across
samples is suboptimal for deep transfer. Different from DELTA,
our ACT devises a learnable channel attentive module, where each
sample has a unique attention weight. As shown in Table 5, our
ACT outperforms DELTA on five public data sets. These results
demonstrate the effectiveness of our ACT compared with DELTA.

Furthermore, apart from considering the redundancy at the
channel level, we also focus on the redundancy at the spatial
level. In this way, we devise a learnable spatial attentive module
to recognize the true informative spatial regions for feature align-
ment. From the results in Table 5, our AST achieves comparable
performance to our ACT, which demonstrates that identifying the
informative spatial regions and channels is equally important for
effective deep transfer.

Last, during the training phase, our attentive modules only
introduce a small number of parameters. As shown in Table 6, for
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Fig. 3. The training and testing curve of the cross-entropy and total loss. Note that we conduct experiments on different methods with ResNet-101 on Stanford Dogs
120. Here, DFA denotes direct feature alignment without attention for deep transfer.
.

Fig. 4. Comparisons of DELTA and our method in terms of Top-1 accuracy (%)
of ResNet-101 on different scales of Caltech 256.

ResNet-101, MLPc and MLPs introduce 0.20M and 0.41M parame-
ers respectively, which is negligible for ResNet-101 (44.55M). In
ractice, for MobileNetV2, the training speed of our AFA (19.9s
er epoch) is similar to that of the DELTA method (19.4s per
poch) on CUB-200-2011. Thus, the increased training burden
ntroduced by these additional parameters is acceptable.

.5.3. Performance on different scales of data set
To evaluate our method and DELTA on different scales of the

arget data set, we train ResNet-101 on Caltech 256 with different
umbers of training samples for each class, i.e., from 10 to 60. The
esults of Fig. 4 show that our methods (i.e., AST, ACT and AFA)
nd DELTA achieve higher accuracy with the increasing number
f training samples. Moreover, our AFA performs better than the
ELTA method. Meanwhile, the performance gap between our
FA and DELTA gradually increases with the increasing number
105
Table 5
Comparisons of DELTA, AST and ACT in terms of Top-1 accuracy (%) on five
public data sets.
ResNet-101 DELTA AST only ACT only

MIT Indoors 85.5 ± 0.3 85.6 ± 0.2 85.6 ± 0.2
Stanford Dogs 120 88.7 ± 0.1 90.1 ± 0.1 90.1 ± 0.1
Caltech 256–30 86.6 ± 0.1 86.9 ± 0.1 87.0 ± 0.1
Caltech 256–60 88.7 ± 0.1 89.2 ± 0.1 89.4 ± 0.1
CUB-200–2011 80.5 ± 0.1 81.7 ± 0.1 81.7 ± 0.3

Inception-V3 DELTA AST only ACT only

MIT Indoors 67 78.1 ± 0.4 78.2 ± 0.2 79.3 ± 0.4
Stanford Dogs 120 88.7 ± 0.1 91.5 ± 0.1 90.3 ± 0.1
Caltech 256–30 84.9 ± 0.2 85.3 ± 0.1 85.1 ± 0.1
Caltech 256–60 86.8 ± 0.1 87.2 ± 0.1 87.1 ± 0.1
CUB-200–2011 76.5 ± 0.1 76.8 ± 0.2 76.7 ± 0.3

MobileNetV2 DELTA AST only ACT only

MIT Indoors 67 77.1 ± 0.3 77.8 ± 0.3 77.9 ± 0.1
Stanford Dogs 120 81.3 ± 0.1 81.8 ± 0.1 81.7 ± 0.1
Caltech 256–30 81.2 ± 0.1 81.6 ± 0.1 81.6 ± 0.1
Caltech 256–60 83.3 ± 0.1 83.7 ± 0.1 83.8 ± 0.1
CUB-200–2011 77.1 ± 0.3 77.0 ± 0.1 77.3 ± 0.1

Table 6
Number of parameters of networks and the MLPs. Note that for each network,
we devise four MLPs and four MLPc for the proposed AST and ACT, respectively

Network # Parameters

Network 4×MLPs 4×MLPc

ResNet-101 44.55M 0.41M 0.20M
Inception-V3 27.16M 0.82M 0.41M
MobileNetV2 3.50M 0.06M 0.03M

of training samples. These results demonstrate the effectiveness
of our AFA on different scales of Caltech 256.
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able 7
Effect of the one-stage AFA and two-stage AFA in terms of Top-1 accuracy (%)
f ResNet-101 on five public classification data sets.

ResNet-101 One-stage AFA Two-stage AFA
ACT+AST AST→ACT

MIT Indoors 67 85.5 ± 0.1 85.9 ± 0.1
Stanford Dogs 120 90.0 ± 0.1 90.1 ± 0.0
Caltech 256–30 87.0 ± 0.1 87.2 ± 0.1
Caltech 256–60 89.4 ± 0.2 89.4 ± 0.1
CUB-200–2011 81.7 ± 0.2 82.2 ± 0.1

Table 8
Effect of the order of AST and ACT in terms of Top-1 accuracy (%) of ResNet-101
n five public classification data sets.

ResNet-101 Two-stage AFA

ACT→AST AST→ACT

MIT Indoors 67 85.8 ± 0.1 85.9 ± 0.1
Stanford Dogs 120 90.1 ± 0.1 90.1 ± 0.0
Caltech 256–30 87.0 ± 0.1 87.2 ± 0.1
Caltech 256–60 89.4 ± 0.1 89.4 ± 0.1
CUB-200–2011 82.2 ± 0.1 82.2 ± 0.1

5.5.4. Effect of the one-stage AFA and two-stage AFA
To evaluate the one-stage AFA and two-stage AFA, we con-

uct experiments on ResNet-101. Specifically, the one-stage AFA
‘‘ACT+AST’’) means that we jointly train the target model and
he two-level attentive modules by minimizing the objective
unction in Eq. (4), where the feature alignment loss is the sum
f Eqs. (6) and (8). In this way, compared with the two-stage
FA, the one-stage AFA requires to optimize the channel atten-
ion and spatial attention parameters simultaneously. Thus, the
raining complexity of the two-stage AFA is lower than that of the
ne-stage AFA. From Table 7, the two-stage AFA achieves better
erformance than the one-stage AFA (e.g., 0.5% improvement
n CUB-200-2011, 0.4% improvement on MIT Indoors 67, and
.2% improvement on Caltech 256-30), which demonstrates the
ffectiveness of the two-stage AFA. Moreover, ACT (only) and AST
only) achieve comparable performance with the one-stage AFA
ut perform worse than the two-stage AFA. To some extent, these
esults demonstrate that the two-level attentions may interfere
ith each other during the training process. Thus, these results
emonstrate the necessity of our two-stage AFA.
To further evaluate the one-stage AFA and two-stage AFA,

e show the loss curves of them on CUB-200-2011. As shown
n Fig. 5, the two-stage AFA converges to a lower loss value
ompared with the one-stage AFA in both training and testing
hases, which indicates the superiority of the two-stage AFA.

.5.5. Effect of the order of AST and ACT
To demonstrate the effect of the order of AST and ACT in
two-stage scheme, we conduct experiments on ResNet-101.

pecifically, ‘‘AST→ ACT’’ scheme denotes that we perform AST
n the first stage and then perform ACT in the second stage. As
hown in Table 8, ‘‘ACT → AST’’ achieves comparable perfor-
ance with ‘‘AST → ACT’’, which demonstrates that our AFA is

insensitive to the order of AST and ACT. Therefore, in the two-
stage AFA, both ‘‘AST→ ACT’’ and ‘‘ACT→ AST’’ training schemes

are appropriate for deep transfer.

106
Table 10
Comparisons between AFA with and without changing source models in terms
of Top-1 accuracy (%) of ResNet-101 on five public classification data sets.
ResNet-101 AFA (w/o change) AFA (Ours) (with change)

MIT Indoors 67 85.6 ± 0.1 85.9 ± 0.1
Stanford Dogs 120 90.0 ± 0.1 90.1 ± 0.1
Caltech 256–30 86.5 ± 0.1 87.2 ± 0.1
Caltech 256–60 88.6 ± 0.1 89.4 ± 0.1
CUB-200–2011 80.8 ± 0.1 82.2 ± 0.1

5.5.6. Effect of learnable and fixed attentive modules
Since the informative channels and spatial regions of the fea-

ture maps may vary for different samples, the fixed attention
across samples may be suboptimal for deep transfer. Thus, we
devise learnable attentive modules to find informative channels
and spatial regions for each sample. In our AFA, each sample
has a unique attention weight. We perform the experiments
about the fixed channel and spatial attentions with ResNet-101
on five public data sets. Specifically, we obtain the fixed channel
attention following DELTA. We adopt our pre-trained attentive
spatial module to forward input samples, and then average the
spatial attention weights of these samples to obtain the fixed
spatial attention. From Table 9, our AFA performs better than
that with fixed channel and spatial attentions (e.g., 0.9% im-
provement on MIT Indoors 67, 0.7% improvement on Caltech
256-60) and DELTA. These results demonstrate the effectiveness
of learnable attentive modules in our AFA compared with these
fixed attention methods.

5.5.7. Necessity of changing the source model in Stage II
To demonstrate the necessity of changing the source model

in Stage II, we conduct experiments on preserving the original
source model in Stage II with ResNet-101 on five public data sets.
From Table 10, our AFA with changing the source model performs
better than that without changing the source model, especially
on Caltech 256-30, Caltech 256-60, CUB-200-2011, and MIT In-
doors 67. These results demonstrate the necessity of changing the
source model in Stage II.

5.5.8. Effect of the number of attentive modules
To demonstrate the effect of the number of attentive modules,

we conduct experiments on ResNet-101 with different numbers
of attentive modules, such as 4, 8, 12. From Table 11, our AFA
with 4 attentive modules (AMs) achieves the best performance,
which demonstrates that introducing too many attentive modules
hampers the transfer performance. Moreover, the training time
of AFA with 4 AMs (136.5s per epoch) is lower than that with
8 AMs (138.5s per epoch) and 12 AMs (139.4s per epoch). Thus,
introducing too many attentive modules increases the training
time in each epoch.

6. Experiments on VIS to NIR face recognition

6.1. Source and target data sets

To further demonstrate the effectiveness of our method, we

conduct experiments on the face recognition task. The source
Table 9
Comparison between DELTA, AFA and AFA with fixed channel and spatial attentions in terms of Top-1 accuracy (%)
of ResNet-101 on five public classification data sets.
ResNet-101 DELTA (Fixed channel attentions) AFA (Fixed all attentions) AFA (Ours)

MIT Indoors 67 85.5 ± 0.3 85.0 ± 0.1 85.9 ± 0.1
Stanford Dogs 120 88.7 ± 0.1 89.8 ± 0.1 90.1 ± 0.0
Caltech 256–30 86.6 ± 0.1 86.9 ± 0.1 87.2 ± 0.1
Caltech 256–60 88.7 ± 0.1 88.7 ± 0.1 89.4 ± 0.1
CUB-200–2011 80.5 ± 0.1 82.1 ± 0.1 82.2 ± 0.1
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Fig. 5. The training and testing curves of the cross-entropy and total loss. Here, we conduct experiments on the one-stage AFA and two-stage AFA with ResNet-101
and report the results on CUB-200-2011.
.

Table 11
Effect of the number of attentive modules in terms of Top-1 accuracy (%)

and training time (seconds) of ResNet-101 on Stanford Dogs 120. Here, #AMs
indicates the number of attentive modules.

ResNet-101 AFA

4 #AMs 8 #AMs 12 #AMs

Top-1 accuracy (%) 90.1 ± 0.0 89.9 ± 0.1 89.8 ± 0.0
Training time (s)/epoch 136.5 138.5 139.4

data set is the visible light (VIS) face data set and the target
data set is the near infrared ray (NIR) face data set. We use the
refined MS-Celeb-1M (Guo, Zhang, Hu, He, & Gao, 2016) released
by Deng, Guo, Xue, and Zafeiriou (2019) as the source data set
and the PolyU NIR face database (PolyU-NIRFD) (Zhang, Zhang,
Zhang, & Shen, 2010) as the target data set. PolyU-NIRFD contains
38,430 NIR face images from 335 identities. We randomly select
80 identities of PolyU-NIRFD as the validation set and the others
as the training data. The evaluation metric is the true accept
rate (TAR) given the false accept rate (FAR).

6.2. Implementation details

We adopt MobileFaceNet (Chen, Liu, Gao, & Han, 2018a) and
ResNet34E-IR (Deng, Guo, Xue, & Zafeiriou, 2019) as base net-
orks. Following the settings in Deng, Guo, Xue, and Zafeiriou
2019), we use the two base models pre-trained on the refined
S-Celeb-1M as the source models. Moreover, we adopt L2,

2-FE, L2-SP (Li et al., 2018), LwF (Li & Hoiem, 2017), Soft Fine-
uning (Soft FT) (Zhao et al., 2019) and DELTA (Li et al., 2019) as
ompared methods. The initial learning rate is set to 0.001 for
wF and 0.0001 for Soft Fine-tuning.
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Table 12
Performance comparisons of different methods on PolyU-NIRFD. ‘‘TAR’’ refers to
True Accepted Rate and ‘‘FAR = 1e−5’’ refers to the False Accepted Rate at 1e−5

MobileFaceNet Verification TAR (%)

@FAR = 1e−5 @FAR = 1e−6 @FAR = 1e−7

L2 94.4 89.1 87.6
L2-FE 93.6 91.2 87.8
L2-SP 96.4 94.9 94.4
LwF 96.9 95.8 95.0
Soft FT 97.4 96.3 94.8
DELTA 97.3 96.1 94.9

AFA (Ours) 98.1 97.2 96.7

LResNet34E-IR Verification TAR (%)

@FAR = 1e−5 @FAR = 1e−6 @FAR = 1e−7

L2 93.5 92.3 91.6
L2-FE 97.4 96.4 95.5
L2-SP 96.6 95.7 95.2
LwF 97.1 95.2 94.5
Soft FT 96.8 95.5 94.7
DELTA 97.6 96.8 96.2

AFA (Ours) 98.6 97.9 97.5

6.3. Comparisons with state-of-the-art methods

From the results of Table 12, we have the following obser-
vations. First, for the lightweight network (i.e., MobileFaceNet),
the four compared methods (L2-SP , LwF, Soft Fine-tuning and
DELTA) surpass the naïve L2 and L2-FE baselines on the TAR by
more than 2.0%. However, three compared methods (L2-SP , LwF,
Soft Fine-tuning) perform worse than the naïve L2-FE baseline on
the TAR for the large network (i.e., LResNet34E-IR). These results
demonstrate that L2-SP , LwF and Soft Fine-tuning methods are
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ensitive to the networks in the face recognition task. Second,
ur AFA outperforms the four compared methods on the TAR by
t least 1.0% for the two networks. These results demonstrate the
ffectiveness of AFA in the face recognition task. In addition, these
esults indicate that AFA is insensitive to the networks in contrast
o the other state-of-the-art methods.

. Conclusion

In this paper, we have proposed a two-stage deep transfer
ethod, named Attentive Feature Alignment (AFA), for effective
omain knowledge transfer by identifying and attending on those
elevant channels and spatial features between two domains. To
his end, we devise two learnable attentive modules to recog-
ize the relevant features at both the channel and spatial levels.
pecifically, in the first stage of AFA, we adopt Attentive Spa-
ial Transfer (AST) to perform spatial-level feature alignment. In
he second stage, we take the target model trained in the first
tage as the source model and then employ Attentive Channel
ransfer (ACT) to perform channel-level feature alignment for
etter knowledge transfer. In this way, our AFA is able to well
atch the source and target domains and ensures better deep

ransfer. More critically, we theoretically analyze the general-
zation performance of AFA, which confirms its superiority to
xisting methods. Extensive experiments on both image classifi-
ation and face recognition demonstrate the effectiveness of AFA
ompared with several state-of-the-art methods. In the future, we
ill extend our proposed method to other tasks, such as scene
egmentation and fine-grained image recognition.
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ppendix. Proof of Theorem 1

roof. We extend Mohri et al. (2012) to a case of the expected
loss:

E(f , h) = E[L(f (x), y)+ αΩ(Wt ,Ws,Wa, h, x)] . (A.1)

or any sample S = {z1, . . . , zN} and any (f , h) ∈ Φ , let ÊS(f , h)
e the empirical loss of f and h over S. Applying McDiarmid’s
nequality (Hoeffding, 1994) to function Ψ defined for any sample
by

(S) = sup
(f ,h)∈Φ

E(f , h)− ÊS(f , h) . (A.2)

ased on McDiarmid’s inequality (Hoeffding, 1994) and Theo-

em 3.1 in Mohri et al. (2012), for any δ > 0, with probability
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at least 1− δ, we have

Ψ (S) ≤ ES[Ψ (S)] + U

√
1
2N

log
(
1
δ

)

≤ 2RAFA
N (Φ)+ U

√
1
2N

log
(
1
δ

)
.

(A.3)

Last, by combining Eq. (A.2) and Inequalities (A.3), we have

E(f , h) ≤ Ê(f , h)+ 2RAFA
N (Φ)+ U

√
1
2N

log
(
1
δ

)
, (A.4)

ith probability at least 1− δ.
Based on Rademacher complexity, we have

AFA
N ≤ RDFA

N , (A.5)

ince the capacity of the function space Φ ∈ F × H is smaller
han the capacity of the function space Φ ∈ F . With the same
number of training samples, we thus have

B(f , h) ≤ B(f ) . (A.6)
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