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Abstract
In this paper, we seek to tackle two challenges in train-
ing low-precision networks: 1) the notorious difficulty in
propagating gradient through a low-precision network due
to the non-differentiable quantization function; 2) the re-
quirement of a full-precision realization of skip connec-
tions in residual type network architectures. During train-
ing, we introduce an auxiliary gradient module which mim-
ics the effect of skip connections to assist the optimiza-
tion. We then expand the original low-precision network
with the full-precision auxiliary gradient module to for-
mulate a mixed-precision residual network and optimize it
jointly with the low-precision model using weight sharing
and separate batch normalization. This strategy ensures
that the gradient back-propagates more easily, thus allevi-
ating a major difficulty in training low-precision networks.
Moreover, we find that when training a low-precision plain
network with our method, the plain network can achieve
performance similar to its counterpart with residual skip
connections; i.e. the plain network without floating-point
skip connections is just as effective to deploy at inference
time. To further promote the gradient flow during back-
propagation, we then employ a stochastic structured pre-
cision strategy to stochastically sample and quantize sub-
networks while keeping other parts full-precision. We eval-
uate the proposed method on the image classification task
over various quantization approaches and show consistent
performance increases.
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1 Introduction

Deep neural networks have made great strides in many
computer vision tasks such as image classification [11, 19],
segmentation [10] and detection [29]. Even though deep
and/or wide models can achieve promising accuracy, their
huge computational complexity makes them incompatible
with energy constrained devices which usually have lim-
ited memory bandwidth and computational power. This has
motivated the community to design energy-efficient mod-
els, often based on quantized precision, aiming not to sac-
rifice accuracy relative to the full-precision models. In this
paper, we propose to tackle two challenges in training accu-
rate low-precision networks.

The first challenge is the non-differentiability of the dis-
crete quantizer. As a result, we cannot directly optimize the
discretised network with stochastic gradient descent. The
most basic solution is to employ the straight-through esti-
mator (STE) [2], however some recent literature has pro-
posed to relax the discrete quantizer itself to continuous
for gradient-based optimization [1, 23]. Even though the
discontinuity of the discretization operation during training
can be partly solved by smoothing it appropriately, some
important information may still be destroyed and lead to
an undesirable drop in accuracy. To solve this problem,
we propose to design efficient training strategies which are
complementary to these quantizer smoothing approaches.

The second challenge is the floating-point storage and op-
erations imported by skip connections in residual type net-
work architectures, which are widely used in existing quan-
tization literature [6,22,39,43,44]. Because of the floating-
point operations, the hardware must preserve floating-point
memory, adders and multipliers in advance, which makes
the quantized model less hardware-friendly. Moreover,
some literature [3, 22, 25] has observed quantizing the skip
connections to low-precision will cause apparent perfor-
mance drop. Instead, we propose to directly train a VGG-
style plain network without floating-point operations which
brings great benefits to the hardware implementation while
still preserving the performance.

We propose the following strategy to simultaneously
tackle the above challenges. Our method is to learn a full-
precision auxiliary gradient module to provide direct hierar-
chical supervisions to the low-precision model (see Fig. 1).
During training, the original low-precision network is ex-
panded with the auxiliary gradient module to formulate a
mixed-precision auxiliary residual network. The auxiliary
residual network and the quantized model are jointly op-
timized with shared convolutional layers and independent
batch normalization. Because of the weight sharing strat-
egy, the auxiliary gradients can rectify the approximated
gradients direction due to the discontinuity of the quantizer.
During testing, only the original low-precision network is
utilized for inference. Interestingly, the proposed auxiliary
gradient module has two important effects. First of all, the
learned auxiliary gradients can compensate the information
loss from the discrete quantizer and promote the conver-
gence for general fixed-point approaches. Moreover, it can
be used to remove the full-precision skip connections in
low-precision models, which results in hardware-friendly
quantized models.

To further improve low-precision network training, we
upgrade the proposed auxiliary gradient training strategy
with a stochastic structured precision scheme which ran-
domly select a portion of the model (i.e., layers, blocks) and
activations or weights to quantize while keeping other parts
full-precision. We find that this scheme is complementary
to the auxiliary gradient training and combining both leads
to further performance improvement.

In summary, our contributions are summarized as fol-
lows:
• We propose an auxiliary gradient module which has

a “two birds, one stone” effect. On one hand, it pro-
vides direct gradients to promote the convergence of
the original quantized model. On the other hand, it can
assist to remove the full-precision skip connections to
obtain a completely quantized low-precision model,
which brings great benefits to hardware devices.
• We employ a stochastic structured precision scheme to

further improve the auxiliary gradient training.
• Extensive experiments show the effectiveness and ro-

bustness of the proposed training approaches on the
image classification task over various existing quanti-
zation approaches.

2 Related Work
Network quantization. Quantization can be categorized
into fixed-point quantization and binary neural networks
(BNNs), in which fixed-point quantization can be divided
into uniform and non-uniform. Uniform approaches [41,43]
design quantizers with a constant quantization step. To re-
duce the quantization error, non-uniform strategies [4, 16,
39] propose to learn the quantization intervals by jointly op-
timizing parameters and quantizers. A fundamental prob-
lem of quantization is to approximate gradients of the
non-differentiable quantizer. To solve this problem, some
works have studied relaxed quantization [1, 23, 36, 43].
Most recently, some recent literature employs reinforce-
ment learning to search for the optimal bitwidth for each
layer [5, 35, 37]. BNNs [14, 28] constrain both weights and
activations to binary values (i.e., +1 or -1), which brings
great benefits to specialized hardware devices. The devel-
opment of BNNs can be classified into two categories: (i)
a focus on improving the training of BNNs [12, 22, 28, 33];
(ii) multiple binarizations to approximate the full-precision
tensor or structure [9, 20, 21, 33, 44]. In this paper, we pro-
pose general training approaches that work on all categories
of quantization approaches.
Weight sharing. Weight sharing has been attracting in-
creasing attention for efficient, yet accurate computation.
In visual recognition, region proposal networks (RPN) in
Faster-RCNN [29] and Mask-RCNN [10] share the same
backbone with task-specific networks, which greatly saves
testing time. For neural architecture search, ENAS [26] al-
lows parameters to be shared among all architectures in the
search space, which saves orders of magnitude GPU hours.
In the network compression field, weight/activation quanti-
zation intends to partition the weight/activation distribution
into clusters and use the centers of clusters as the possible
discrete values. This strategy can be interpreted as a special
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case of weight sharing. Different from these approaches,
we propose to utilize weight sharing for jointly optimizing
the full-precision auxiliary gradient module and the original
low-precision network to improve the accuracy of the latter
quantized model.
Dropout strategies. Dropout [32], Maxout [8], DropCon-
nect [34] and DropIn [31] are a category of approaches that
propose to stochastically drop intermediate nodes or con-
nections during training to prevent the network from over-
fitting. Huang [13] further propose stochastic depth regu-
larization via randomly dropping a subset of layers during
training. And Dong [7] propose to randomly quantize a por-
tion of weights to low-precision in the incremental training
framework [40]. The method in [7] is developed for only
quantizing weights of a network. In our method, we de-
velop extension of it by further randomly quantizing a por-
tion of the network i.e., layers or blocks as well as activa-
tions and weights. Moreover, Zhuang et al. [43] propose
two progressive training strategies: quantizing weights and
activations in a two-stage manner; progressively decreasing
the bit-width from high-precision to low-precision during
the course of training. However, the multi-stage training
sacrifices the efficiency greatly. In contrast, we improve the
progressive quantization into only a single stage. Our study
shows that this extended scheme is complementary to the
proposed auxiliary gradient training.

3 Method
We now describe the proposed strategy: in Sec. 3.1, we ex-
plain the auxiliary gradient module design and optimiza-
tion, while in Sec. 3.2, we describe the stochastic structured
precision for relaxed optimization.

3.1 Auxiliary gradient module
The module is designed to solve two challenges simultane-
ously. First, the quantizer q(·) (e.g., rounding(·), sign(·))
receives the continuous signal as input and outputs discrete
values. This process is non-differentiable and the gradients
can only be approximated, so we intend to learn additional
signals to compensate the information loss. Second, we
want to obtain a quantized network with entire fixed-point
operations by removing the floating-point skip connections.
To solve the above two problems, we propose an auxiliary
gradient module that simulates the effects of the skip con-
nections.

3.1.1 Module design

The commonly used layer-ordering for a quantized net-
work [4, 28, 39] is BN→ ReLU → q(·) → QConv, where
QConv denotes fixed-point convolution and this pre-BN
building block is shown in Fig. 1 (a). We also illustrate
the original quantized network that consists of these build-
ing blocks in Fig. 1 (c). To provide direct gradients that
can compensate the information loss of the quantized con-
volutional layers in the low-precision network, we propose
to expand the low-precision network with the full-precision
auxiliary gradient module during training. As a result, the
whole training framework can now be formulated into two

networks: the original low-precision network F and its ex-
panded mixed-precision version H with auxiliary gradient
module incorporated, where H shares the parameters of F
(see Fig. 1 (b)).

In particular, we add P additional branches on top of the
output feature maps {Op}Pp=1 of the corresponding convo-
lutional layers in F , respectively. Let {l1, ..., lP } be the
layer indexes where we add the auxiliary gradient branches.
For the p-th branch of the gradient module, it receives
the feature map Op of the lp-th layer from F and outputs
an adapted feature representation φp(Op), where φ(·) is a
trainable adaptor. The adaptor could be comprised of one or
a few full-precision convolutional layers, we adopt a simple
1×1 convolutional layer followed by a batch normalization
layer in this paper.

In the mixed-precision network H , the outputs of the
adaptor at different branches are sequentially aggregated in
the same fashion as in the residual network. Formally, let
gp denotes the aggregated feature up to the p-th branch. It
is calculated by adding the adapted feature φp(Op) from F
and the (p− 1)-th aggregated feature in H:

gp = φp(Op) + gp−1. (1)

For clarity of notation, we omit the initial pre-processing
and final classification steps.

There are two situations to discuss: 1) When F has skip
connections, the gradient module in H provides more skip
connections for F , which has been proven to be effective
for training low-precision networks [3, 22, 44]. Moreover,
the direct full-precision auxiliary gradients can help rectify
the approximate gradients updating direction of the low-
precision model; 2) When F is without skip connections,
H can be treated as a residual network with a low-precision
path F . In other words, we intend to utilize a residual net-
work to implicitly increase the gradient paths of a plain net-
work via weight sharing to facilitate its optimization. The
auxiliary residual network H and the plain low-precision
network F are jointly optimized to promote the conver-
gence of F . In the testing phase, only the plain network F
is used for inference without the auxiliary gradient module,
which is illustrated in Fig. 1 (c).

3.1.2 Optimization

To jointly optimize the two networks, we formulate a multi-
task objective:

L = L1 + λL2, (2)

where L1 and L2 are objectives for networks F and H , re-
spectively, and λ is a balancing hyperparameter. For the
classification task, L1 and L2 are both set to the cross-
entropy loss.

There is some subtlety to the optimization: in network F ,
all convolutional layers are quantized while networkH con-
sists of a mixture of low-precision and full-precision con-
volutional layers. However, the BN statistics of the full-
precision and low-precision convolutional layers differ a lot
due to the quantization process. As a result, the BN lay-
ers should not be shared between F and H . To solve this
problem (similar to [15, 38]) we assign independent batch
normalization parameters for F and H respectively. By
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(a): A building block in
the quantized model

block=

(b): Overview of the training stage

(c): Overview of the testing stage
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Figure 1: Overview of the proposed framework. Green color represents low-precision operations while blue color denotes full-
precision operations. The low-precision network is represented by F and we combine F with the floating-point auxiliary gradient
module to formulate an auxiliary residual network H . During the training stage, F and H are jointly optimized with separate batch
normalization, where H shares the convolutional layers of F . Only the learnt quantized network F are used during testing. The
floating-point skip connections are denoted by dashed curves since they should be removed when F is a plain network but preserved
when F is a residual network.

privatizing all BN layers, we can resolve the feature dis-
tributions inconsistency via independently normalizing the
feature mean and variance for the two networks. The extra
BN layers of H are only used for training but are all re-
moved during testing, which introduces no extra additional
runtime and memory cost for the low-precision network F .
Since BN layers are independent in the two networks, we
conduct forward calculation for F andH separately in each
iteration and accumulate all back-propagated gradients for
updating the parameters. As a result, the gradients of the
shared convolutional layers are a weighted average from F
and H . The optimization process is summarized in Algo-
rithm 1.

Algorithm 1: Joint training approach w.r.t. the low-
precision main network F and the mixed-precision aux-
iliary residual network H .

Input: Current mini-batch {xt,yt}; convolution and
BN parameters {Wt

m,P
t
m} w.r.t. the p-th layer

of the low-precision network F ; shared
convolution, adaptor and BN parameters
{Wt

m,W
t
a,P

t
a} w.r.t. the p-th branch of the

auxiliary residual network H;
Output: Updated parameters

{Wt+1
m ,Pt+1

m ,Wt+1
a ,Pt+1

a }; learning rate
ηt+1.

1 Obtain the quantized weight Qt
m = q(Wt

m);
2 ytm = Forward(xt,Qt

m,P
t
m);

3 Compute the loss L1(y
t,ytm);

4 ∂L1

∂Qt
m
, ∂L1

∂Pt
m

= Backward( ∂L1

∂yt
m
,Qt

m,P
t
m) ;

5 yta = Forward(xt,Qt
m,W

t
a,P

t
a) ;

6 Compute the loss L2(y
t,yta);

7 ∂L2

∂Qt
m
, ∂L2

∂Wt
a
, ∂L2

∂Pt
a
= Backward(∂L2

∂yt
a
,Qt

m,W
t
a,P

t
a);

8 Compute the gradients of Qt
m:

∇Qt
m = 1

1+λ (
∂L1

∂Qt
m

+ λ ∂L2

∂Qt
m
)

9 Update parameters using Adam;

3.1.3 Relationship to other approaches

block block

(a): Add additional supervisions in intermediate layers

⊕ ⊕ block ⊕

block block⊕ ⊕ block ⊕

block block⊕ ⊕ block ⊕

(b): Knowledge distillation for training the low-bit network

l1
! l2

!

l!d1 l!d 2 l!d3

L!1

L! 2

L!

Figure 2: Overview of the two related approaches. Green
color represents low-precision operations while blue color de-
notes floating-point operations.

Training with additional losses. To provide auxiliary sig-
nals for improving convergence, a straightforward way is
to add multiple losses to the intermediate layers, which is
shown in Fig. 2 (a). Then the final objective becomes:

L̃obj = L̃+

M∑
i=1

αi l̃i, (3)

where L̃ is the task loss, αi and l̃i are the i-th scale and
auxiliary loss, respectively. The multiple auxiliary losses
serve as regularizers and can provide direct gradients during
training. However, they cannot provide hierarchical gradi-
ent paths as the auxiliary gradient module. Moreover, the
scales as well as the positions of the additional supervisions
are very heuristic and may have negative impact to the final
performance. In the proposed approach, a single auxiliary
objective is added to the network H . In addition, the aux-
iliary gradient module allows the final supervision directly
propagate back to multi-level intermediate layers.
Knowledge distillation. Recently, there are several works
that propose to use knowledge distillation (KD) to improve
the performance of the low-precision network [24, 27, 43].
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In particular, a student low-precision network learns to
mimic the knowledge of a full-precision teacher network,
where both networks can be mutually updated (see Fig. 2
(b)). The objective can be formulated as

L̂obj = L̂1 + L̂2 +

M∑
i=1

βi l̂di, (4)

where L̂1 and L̂2 are task-specific objectives for student and
teacher networks respectively, βi and l̂di represent the i-th
scale and distillation loss. Compared with KD approaches,
the proposed auxiliary gradient module has several advan-
tages. First, the extra training overhead is smaller. The main
network F shares the weights with H , where the only addi-
tional parameters are from the adaptors and separate batch
normalization layers. In contrast, KD introduces an addi-
tional teacher network to be optimized, which is usually
deeper than the student low-precision model, and the final
performance can be sensitive to the positions of adding the
guided signals. Furthermore, the auxiliary gradient mod-
ule can mimic the effect of skip connections to optimize
a plain network. It enables us to train an energy-efficient
completely quantized model with comparable performance
with the original residual architecture.

3.2 Stochastic structured precision

Algorithm 2: Stochastic structured precision training
algorithm.

Input: Training data {xt,yt}; low-precision network
F with parameters W t; stochastic ratio δt and
decay rate µ.

Output: Updated parameters W t+1; stochastic ratio
δt+1.

1 Partition F into N fragments {f1, ..., fN};
2 if δt > 0 then
3 Obtain the binary indicator matrix Bt via uniform

sampling with probability δt;
4 Partition the network F into quantized set

{Gqwa, Gqw, Gqa} and full-precision set Gr
according to Bt;

5 Obtain the mixed-precision parameter set
Q̃t = {q(W t

qwa), q(W
t
qw),W

t
qa,W

t
r} accordingly;

6 else
7 Q̃t = q(W t);

8 ỹt = Forward(xt, Q̃t,Bt);
9 Compute the loss L(yt, ỹt);

10 ∂L

∂Q̃t
= Backward( ∂L∂ỹt , Q̃

t,Bt);

11 Update parameters W t+1 using Adam;
12 δt+1 = δt − µ;

The gradient approximation of the quantization func-
tion is noisy and may not be the right updating direction.
And most existing quantization approaches quantize all the
weights and activations all together in each iteration. Re-
cent studies show that progressively or stochastically quan-
tize a part of the network [7,40], or quantize weights and/or

activations [43] leads to better convergence of the low-
precision network training.

To further improve the network training with the auxil-
iary gradient module, this section develop of an extension
of our method by employing a stochastic structured preci-
sion. The term “stochastic structure” means that we will
randomly choose a network structural aspect, i.e., layers,
blocks, activations or weights to quantize and keep the rest
full precision. The specific scheme is elaborated as follows.

Suppose we decompose the low-precision networkF into
N fragments F = {f1, ..., fN}, where fi can be any struc-
ture such as a convolutional layer or a residual block. For
each iteration, we intend to partition the fragments into two
sets, a low-precision set Gq = {fq1, ..., fqNq

} and a full-
precision set Gr = {fr1, ..., frNr

}, which satisfies the con-
dition:

Gq ∪Gr = F, and Gq ∩Gr = ∅. (5)

where Nq and Nr are the number of elements in two sets
respectively.

In our method, we randomly partition F into Gq and
Gr. This is implemented by introducing a binary indica-
tor b ∈ RN . We randomly set b(i) = 1 with probability
(1− δ), and if b(i) = 1 the i-th fragment will be quantized
and otherwise will be kept as full precision. We linearly de-
crease δ to 0 to ensure the whole network quantized in the
end. Note that this procedure implicitly achieves the effect
of [40] but without the need of multi-round training.

To further increase the randomness in quantizing f , we
can stochastically choose whether to quantize weights or
activations or both of them. This can be implemented by
randomly sample a binary indicator matrix B ∈ RN×2,
where its first column is used to decide whether to quantize
the weights in the corresponding fragment and the second
column is used to decide whether to quantize activations re-
spectively. As a result, Gq can be further partitioned into
three subsets {Gqwa, Gqw, Gqa}, which represents quantiz-
ing both weights and activations, only quantizing weights
and only quantizing activations, respectively. In this way,
our method can achieve the effect of progressive training as
proposed in [43].

In Sec. 4.5.1, we will explore the effect of different struc-
ture choices of f as well as the extent of randomness to the
final performance.

4 Experiments

We define several methods for comparison as follows: AG:
We jointly optimize the auxiliary gradient module and the
original low-precision network as described in Sec. 3.1.
We test it on two scenarios: low-precision network with
or without skip connections. SSP: It corresponds to the
stochastic structured precision strategy in Sec. 3.2. AG +
SSP: We further combine the two strategies to form the
complete approach. To verify the effectiveness of the pro-
posed training approaches, we experiment on various repre-
sentative quantization approaches, including uniform fixed-
point approach DoReFa-Net [41], non-uniform fixed-point
method LQ-Net [39], as well as binary neural network ap-
proaches BiReal-Net [22] and GroupNet [44]. We perform
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experiments on two standard image classification datasets,
including CIFAR-100 [18] and ImageNet [30].

4.1 Implementation details

Following previous approaches [14, 39, 41–43], we quan-
tize all the convolutional layers to ultra-low precision ex-
cept the first and last layers. However, to achieve a com-
pletely quantized network, we keep the first convolutional
layer and the last fully-connected layer to 16-bit. We first
pre-train the full-precision counterpart as initialization and
then fine-tune the quantized model. For all ImageNet exper-
iments, training and testing images are resized to 256×256,
and 224 × 224 patches are randomly cropped from an im-
age or its horizontal flip, with the per-pixel mean subtracted.
We use the single-crop setting for testing. No bias terms are
used. We use SGD optimizer for the pre-training stage. For
the fine-tuning stage, we adopt the Adam optimizer [17].
The mini-batch size is set to 256. We train a maximum 35
epochs and decay the learning rate by 10 at the 25-th and
30-th epochs. For training the fixed-point methods [39,41],
the learning rate is initialized by 1e-3. For BNNs [22, 44],
the initial learning rate is set to 5e-4. For the AG based
experiments, we set λ to 1.0. In practice, we add one aux-
iliary branch at the end of each block (e.g., a residual block
in [11]). For the SSP based experiments, the stochastic ratio
δ is initialized to 0.5 and linearly decayed to 0 at the 20-th
epoch. Our implementation is based on Pytorch.

4.2 Effect of the auxiliary gradient module

To investigate the effectiveness of the proposed auxiliary
gradient module, we perform experiments on two settings:
the low-precision model with or without floating-point skip
connections.
With skip connections. We first elaborate the cases with
skip connections. The results are reported in Table 1. By
combining the baseline (with skip connections) with AG,
we can observe steadily performance increase compared
with the original baseline. This strongly supports that the
learned floating-point auxiliary gradients can facilitate the
convergence of the low-precision model. The gradients
of the shared weights are averaged from both the gradi-
ent auxiliary module and the original low-precision net-
work to achieve more accurate updating direction. More-
over, increasing gradient paths are important to solve the
non-differentiability of the discrete quantization process es-
pecially for binary neural networks [3, 22]. Note that we
break the records of BNNs by further improving the current
state-of-the-art GroupNet. To make it more clear, we plot
the convergence curves in Fig. 3 (a). From the figure, we
can observe that AG can provide a good initialization for
finetuning and assist the convergence.
Without skip connections. We then analyze training a
plain low-precision network without skip connections. The
results can be seen in Table 2. plain represents we directly
optimize a low-precision plain network without skip con-
nections. By comparing plain and plain + AG, we observe
apparent accuracy increase by incorporating AG. For exam-
ple, in ResNet-34 based experiments, introducing AG can

boost the accuracy by ∼5%. However, we still find perfor-
mance gap between the full-precision accuracy. This can be
attributed to two assumptions of skip connections. First, the
skip connections may improve the convergence of training,
and this can be proven by the performance improvement
by incorporating the additional AG. Second, the skip con-
nection and the activations after one convolution are added
through a tensor addition. Then the representational capa-
bility (i.e., the value range) of each entry in the added acti-
vations is significantly enhanced. In other words, the plain
network has less representability than its residual counter-
part. However, the performance gap is within 1% which
is still acceptable but will bring great benefits for hardware
implementations. We further plot the convergence curves
in Fig. 3 (b). From the figure, we can observe that AG can
steadily improve the plain network baseline in all epochs.

Table 1: Accuracy (%) of different comparing methods on the
ImageNet validation set. All the cases keep skip connections dur-
ing testing.

model method top-1 acc. top-5 acc.

ResNet-50

DoReFa-Net (2-bit) 70.2 89.1
DoReFa-Net + AG 71.8 90.6
DoReFa-Net + SSP 72.2 90.8

DoReFa-Net + AG + SSP 72.5 90.9

ResNet-50

LQ-Net (3-bit) 74.2 91.6
LQ-Net + AG 75.4 92.4
LQ-Net + SSP 75.1 92.3

LQ-Net + AG + SSP 75.6 92.6

ResNet-18

BiReal-Net 56.4 79.5
BiReal-Net + AG 58.6 81.2
BiReal-Net + SSP 58.8 81.2

BiReal-Net + AG + SSP 58.9 81.4

ResNet-18

GroupNet (5 bases) 64.8 85.7
GroupNet + AG 66.0 86.5
GroupNet + SSP 65.9 86.3

GroupNet + AG + SSP 66.2 86.8

Table 2: Accuracy (%) of the proposed approaches on the Im-
ageNet validation set. All the cases are 2-bit and without skip
connections except for the baselines. We can observe that the
auxiliary gradient module can significantly improve the plain net-
work performance.

model method top-1 acc. top-5 acc.

DoReFa-Net on ResNet-18

baseline (2-bit) 62.7 84.2
plain 59.5 82.1

plain + AG 61.8 83.7
plain + AG + SSP 62.2 84.0

DoReFa-Net on ResNet-34

baseline (2-bit) 66.2 86.6
plain 60.4 82.5

plain + AG 64.9 85.8
plain + AG + SSP 65.5 86.2

LQ-Nets on ResNet-34

baseline (2-bit) 69.8 89.1
plain 63.5 84.6

plain + AG 68.6 88.5
plain + AG + SSP 69.3 88.8

4.3 Effect of the structured stochastic preci-
sion

Here we further explore the effect of the structured stochas-
tic precision strategy on general quantization approaches.
The default structure of the fragment f is a residual block
and we stochastically quantize weights and activations in all
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Figure 3: (a): Accuracy(%) w.r.t. 2-bit DoReFa-Net with ResNet-50 on ImageNet. The quantized model has skip connections. (b):
Accuracy(%) w.r.t. 2-bit DoReFa-Net with ResNet-18 on ImageNet. The quantized model is without skip connections. The learning
rate is decayed by 10 at the 25-th and 30-th epochs.

cases unless special explanations. The results are reported
in Table 1. By combining the baseline methods with SSP,
we find apparent performance increase compared with the
baselines in all cases. During training, we stochastically
keep a portion of network to full-precision and update by
the standard gradient-based method. This strategy shares
the similar spirit with progressive quantization [43] to re-
lax the discrete quantization function effectively. Moreover,
the proposed progressive strategy only requires one train-
ing stage without fine-tuning the model in many training
rounds.

4.4 Effect of combining AG and SSP

We further combine AG and SSP and report the full perfor-
mance in Table 1 and Table 2. From the results, we can
conclude that SSP is complementary to AG which can fur-
ther benefit the performance of AG. For example, for 2-bit
DoReFa-Net with ResNet-18 on ImageNet, AG + SSP can
reduce the gap between a quantized plain network and its
residual counterpart to 0.5%. Moreover, we illustrate the
convergence curves in Fig. 3. plain + AG + SSP fluctuates
at the beginning and gradually becomes stable due to the
linearly decayed randomness. And its accuracy is consis-
tently better than plain and plain + AG.

4.5 Ablation study

4.5.1 Comparison with related approaches

In this section, we compare the auxiliary gradient module
with the related approaches discussed in Sec. 3.1.3. addi-
tional losses and KD correspond to the “Training with ad-
ditional losses” and “Knowledge distillation” strategies, re-
spectively. We experiment based on the 2-bit DoReFa-Net
with ResNet-18 and ResNet-34 on ImageNet. The results
are reported in Table 3. For training additional losses, we
evenly add the cross-entropy losses at the end of residual
blocks which include downsampling and set the balancing
parameter α to 0.01. For training KD, we follow the same
setting in [43] and the teacher network is set to be the same
as the student network.

When the low-precision model is a plain network, we can

see that plain + AG achieves the best performance. For
example, plain + AG outperforms plain + KD by 3% on
ResNet-34. It can be attributed to the design of the aux-
iliary gradient module which mimics the structure of skip
connections during training. When it comes to the case
where the fixed-point model is with full-precision skip con-
nections, we can observe that AG and KD achieve compa-
rable performance while both perform much better than the
additional losses. And we empirically find that additional
losses is sensitive to the scales and positions of additional
supervisions and have limited contribution to the final per-
formance. For KD, both the full-precision teacher network
and the low-precision student network are jointly optimized
which increases the training burden a lot. In contrast, we
only introduce several additional 1 × 1 convolutional lay-
ers and batch normalization layers, where the extra training
cost is much smaller. Moreover, the proposed AG requires
only one hyperparameter and have advantages over KD on
training low-precision plain networks.

Table 3: Accuracy (%) of different supervision strategies on the
ImageNet validation set based on 2-bit DoReFa-Net on ResNet-
18 and ResNet-34.

model method top-1 acc. top-5 acc.

ResNet-18

DoReFa-Net (2-bit) 62.7 84.2
plain + additional losses 59.7 82.1

plain + KD 60.6 83.0
plain + AG 61.8 83.7

DoReFa-Net + additional losses 62.9 84.1
DoReFa-Net + KD 64.1 85.5
DoReFa-Net + AG 64.3 85.4

ResNet-34
DoReFa-Net (2-bit) 66.2 86.6

plain + KD 61.9 83.7
plain + AG 64.9 85.8

4.5.2 Effect of different SSP policies

We further explore the influence of different choices of the
fragment f described in Sec. 3.2 as well as the extent of
randomness. We treat GroupNet as our baseline approach
and utilize 5 binary bases. The results are reported in Ta-
ble 4. We explore two different structures to f , including
one convolutional layer and one residual block which corre-
sponds to layerdrop and blockdrop respectively. We further
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incorporate the randomness of quantizing weights and acti-
vations into f and is denoted by W/A. From the results, we
can find that all the four cases show improved performance
compared with the baseline, which justifies adding random-
ness is a general way for relaxing the low-precision net-
work training. By comparing the result of layerdrop + W/A
with layerdrop, we can observe performance drop with the
increase of randomness. However, blockdrop + W/A per-
forms slightly better than blockdrop. This shows that adding
excessive stochasticity can make the gradient updating di-
rection deviate while appropriate extent of randomness can
relax the non-differentiable problem to facilitate optimiza-
tion. Moreover, the accuracy of layerdrop and blockdrop
are very close, which shows that the structure of f is not
sensitive to the final performance.

Table 4: Accuracy (%) of different stochastic policies on the Im-
ageNet validation set.

model method top-1 acc. top-5 acc.

ResNet-18

GroupNet (5 bases) 64.8 85.7
GroupNet + blockdrop 65.6 86.3
GroupNet + layerdrop 65.7 86.5

GroupNet + blockdrop + W/A 65.9 86.6
GroupNet + layerdrop + W/A 65.0 86.1

4.5.3 Effect of the number of auxiliary gradient paths

In this section, we explore the effect of the number of aux-
iliary gradient paths to the final performance. We work on
2-bit DoReFa-Net based on ResNet-34 (without skip con-
nections) on ImageNet and the results are shown in Table 5.
blockwise AG denotes we add an auxiliary branch at the end
of each residual block while layerwise AG indicates we add
one additional path after each convolutional layer. From the
results, we empirically find that these two variants achieve
similar accuracy. It can be attributed to the blockwise auxil-
iary gradient module is good enough for simulating the skip
connections. Adding more gradient paths can provide more
hierarchical supervisions but the improvement is limited.

Table 5: Accuracy (%) w.r.t. different number of auxiliary
branches on the ImageNet validation set.

model method top-1 acc. top-5 acc.

ResNet-34 plain + blockwise AG 64.9 85.8
plain + layerwise AG 65.1 85.9

4.6 Experiments on CIFAR-100
Finally, we test the proposed approach on smaller scale
dataset CIFAR-100 to justify its robustness. The experi-
ment is based on 2-bit DoReFa-Net using ResNet-18. We
report the results in Table 6. From the results, we can find
that the proposed AG can significantly improve the quan-
tized plain model results. Interestingly, plain + AG can
even outperform the baseline that with skip connections in
terms of Top-1 accuracy. In other words, we can train a
low-precision plain network without skip connections (i.e.,
completely quantized network) that can compete with the
original low-precision residual network counterpart. More-
over, training with AG and SSP together can further improve

the accuracy compared with employing AG only, which jus-
tifies SSP is complementary to the optimization of AG.

Table 6: Accuracy (%) of 2-bit DoReFa-Net using ResNet-18 on
the CIFAR-100 dataset.

model method top-1 acc. top-5 acc.

ResNet-18

full-precision 70.7 91.3
baseline (2-bit) 67.6 90.2
baseline + AG 68.3 90.0

baseline + AG + SSP 68.7 90.5
plain (2-bit) 64.6 88.3
plain + AG 67.9 90.0

plain + AG + SSP 68.4 90.3

5 Conclusion
In this paper, we have proposed an auxiliary gradient mod-
ule for training low-bitwise convolutional neural networks.
In specific, we have proposed to expand the original low-
precision network with a full-precision auxiliary gradient
module during training. The auxiliary mixed-precision
residual network and the original quantized network are
jointly optimized with weight sharing and separate batch
normalization. This strategy has two effects. On one hand,
when low-bitwise model is with skip connections, it can in-
crease the gradient paths to promote convergence. On the
other hand, if the low-bitwise model is a plain network,
the auxiliary gradient module can mimic the effect of skip
connections to aid the training. As a result, we can train
a completely quantized network, which brings great bene-
fits to the hardware devices. Moreover, we have also em-
ployed a stochastic structured precision strategy to further
improve the auxiliary gradient training. We have conducted
extensive experiments on various quantization approaches
and observed consistent performance increase on the image
classification task.
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