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Visual Relational Reasoning is the basis of many vision-and-language based tasks (e.g., visual question an-
swering and referring expression comprehension). In this article, we regard the complex referring expression
comprehension (c-REF) task as the reasoning basis, in which c-REF seeks to localise a target object in an image
guided by a complex query. Such queries often contain complex logic and thus impose two critical challenges
for reasoning: (i) Comprehending the complex queries is difficult since these queries usually refer to mul-
tiple objects and their relationships; (ii) Reasoning among multiple objects guided by the queries and then
localising the target correctly are non-trivial. To address the above challenges, we propose a Transformer-
based Relational Inference Network (Trans-RINet). Specifically, to comprehend the queries, we mimic the
language-comprehending mechanism of humans, and devise a language decomposition module to decom-
pose the queries into four types, i.e., basic attributes, absolute location, visual relationship and relative loca-
tion. We further devise four modules to address the corresponding information. In each module, we consider
the intra-(i.e., between the objects) and inter-modality relationships(i.e., between the queries and objects) to
improve the reasoning ability. Moreover, we construct a relational graph to represent the objects and their
relationships, and devise a multi-step reasoning method to progressively understand the complex logic. Since
each type of the queries is closely related, we let each module interact with each other before making a deci-
sion. Extensive experiments on the CLEVR-Ref+, Ref-Reasoning, and CLEVR-CoGenT datasets demonstrate
the superior reasoning performance of our Trans-RINet.
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1 INTRODUCTION

Visual relational reasoning requires an agent to fully comprehend the textual information and
then reason among multiple objects based on their relationships. This ability is vital for many
vision-and-language based tasks, such as visual question answering (VQA) [22, 32, 35] and vision
language navigation (VLN) [1, 34, 48]. However, reasoning can be very difficult because the visual
and textual contents are often very complex. How to build a model to perform complex visual
relational reasoning and how to validate the reasoning ability of such a model are still unclear.

Fortunately, the complex referring expression comprehension (c-REF) task [29, 56] is suitable
as a test bed for visual relational reasoning methods. The reason is that c-REF requires an agent
to perform reasoning among multiple objects and then localise a target object in an image, guided
by a complex query (see Figure 1). More critically, the complex visual and textual contents in this
task can be a simulation of real-world scenarios.

This task, however, is very challenging due to the following reasons: (a)The query typically
contains multiple types of information, including the basic attributes, absolute location, visual
relationship and relative location (refer to Figure 1). Comprehensively understanding the com-
plex query is non-trivial. (b) Different from the general referring expression comprehension
(g-REF) task (e.g., RefCOCO [25, 33]) that the queries usually describe objects without considering
any relationships, the queries in c-REF often contain complex relationships among several objects
(Refer to in Figure 2). Reasoning among multiple objects and then correctly localising the target
object are very challenging.

Recently, Liu et al. [29] found some state-of-the-art g-REF methods [59] cannot achieve excel-
lent reasoning performance on the c-REF task (e.g., a CLEVR-Ref+ dataset [29]), which may be
attributed to the overlooking of the relationship among objects. Moreover, some methods [47, 58]
seek to perform single-step reasoning only to model the relationships between the objects. How-
ever, as the real-world queries are usually complex and involve intricate relationships, adopting
single-step reasoning to comprehend the queries is insufficient. As shown in Figure 1, reasoning is
a multi-step process: Step 1, Find “the first one of the yellow cylinders from the left”; Step 2, Based
on object selected in Step 1, find “the thing that is on the left side of ” it; Step 3, Find “the thing

that is in front of ”the object selected in Step 2; Step 4, Find “the sphere that has the same colour

as” the object selected in Step 3. Although some methods [3, 17] attempt to perform multi-step
reasoning, these methods do not differentiate between the types of information in the queries. In
this sense, they have insufficient query comprehension, resulting in capturing the complex logic
insufficiently, and thus achieving unsatisfied performance.

To alleviate these issues, we propose a Transformer-based Relational Inference Network (Trans-
RINet), which distinguishes different information in the query and models the relationships be-
tween the objects for multi-step reasoning. Specifically, to comprehend the sophisticated query,
we devise a language decomposition module to decompose the query into four types, i.e., the
basic attributes, absolute location, visual relationship and relative location. Then, we propose a
Transformer-based object attention module to find the objects that are relevant to the in-
formation of the basic attributes and absolute location in the query. Moreover, to achieve multi-
step reasoning, we propose a Transformer-based relational inference module. Specifically, we
first transform an image into a relational graph, where the nodes correspond to the objects, and
the edges denote their relationships. With the graph, we propose a multi-step reasoning method
with Gated Graph Neural Networks (GGNNs) [28] to progressively understand the complex
logic.

Note that in both the Transformer-based object attention module and relational inference
module, we consider the intra- (i.e., between the objects) and inter-modality relationships (i.e.,
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Fig. 1. An example on the CLEVR-Ref+ dataset [29], where the query contains complex relationships, requir-
ing multi-step reasoning to be solved. The aim of the example is to localise the target “metal sphere”based
on the given complex query. To solve this, we propose to model the multi-step relationships via a relational
graph step by step, and then reason to the target.

Fig. 2. Examples of the g-REF (e.g., RefCOCO dataset [25]) and c-REF tasks (e.g., CLEVR-Ref+ [29] and Ref-
Reasoning [56] datasets). Note that the object referred to by the query is indicated by a red bold rectangle.

between the queries and objects). When localising one object in an image, only considering the
inter-modality relationship is not enough. The intra-modality relationship is also important for
localising the target. For example, if an image contains two similar objects, considering the inter-
modality relationships only may result in localising the target insufficiently. But if further mod-
elling the intra-modality relationships, the difference between these two objects is easy to be
discovered.

We also propose a multimodal fusion module to let each module corresponding to each type
of query interact with each other, since each type of query is closely related. Finally, we conduct
experiments on some classical c-REF benchmarks, e.g., CLEVR-Ref+ [29], Ref-Reasoning [56], and
CLEVR-CoGenT [29] datasets, where the queries in these datasets are complex, requiring powerful
relational reasoning ability to localise the target of interest.

Summary of our key contributions:

• We propose a Transformer-based Relational Inference Network (Trans-RINet) to achieve
long-chain reasoning, where Trans-RINet decomposes the query into four types to simplify
the understanding of the query. Moreover, Trans-RINet performs multi-step reasoning with
GGNNs to progressively comprehend the complex logic in the query.
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• We propose to consider both the intra- and inter-modality relationships when localising the
target. Moreover, we propose to promote the interaction between each module, since each
type of query is closely related.
• Extensive experiments on the CLEVR-Ref+ [29], Ref-Reasoning [56], and CLEVR-CoGent

[29] datasets demonstrate the superiority of our Trans-RINet.

This article extends our preliminary version MGA-Net [61] from several aspects. We propose
an advanced version Trans-RINet by further: (1) considering the intra-modality relationships to
improve the reasoning ability. Specifically, MGA-Net only considers inter-modality relationships
when addressing the reasoning process. Instead, Trans-RINet considers intra- and inter-modality
relationships when localising the target. In practice, due to the powerful ability to model rela-
tionships of Transformer, we substitute for the attention unit in object attention and relational
inference modules of MGA-Net with the Transformer; (2) considering the interaction between
each module to improve the reasoning ability. MGA-Net isolatedly deals with each module that
corresponds to each type of query, ignoring that these modules are closely related. In Trans-RINet,
we propose to promote the interaction between each module. Since the Transformer can make the
entities connect and interact with each other freely, we adopt the Transformer as the interaction
base; (3) providing more empirical results to show the effectiveness of our method. Specifically,
Trans-RINet outperforms MGA-Net by more than 10% on the CLEVR-Ref+ and CLEVR-CoGent
datasets.

2 RELATED WORK

2.1 Visual Relational Reasoning

Many vision-and-language tasks require visual relational reasoning to localise the referred object
of the query, e.g., visual question answering (VQA) [30, 49–51, 57], visual language navigation
(VLN) [21, 26, 38] and referring expression comprehension (REF) [39, 46, 47]. To address these
high-level tasks, some recent works [18, 47, 58] tried to divide the query into components and
performed the reasoning based on each component. Other works [6, 24, 43] exploited Neural Mod-
ule Networks [2] to perform step-by-step reasoning by clearly dividing the queries into specific
logic. Specifically, Chen et al.proposed a neural-symbolic framework called the Dynamic Concept
Learner (DCL) [6], which achieves dynamic visual reasoning by recognising objects and events in
videos and analysing their temporal and causal structures.

2.2 Referring Expression Comprehension

Referring Expression Comprehension (REF) task seeks to localise the referent (i.e., object) in
a given image with a query. Many benchmark datasets were released for research (e.g., Ref-
COCO [25]). However, as discussed in [17], the queries in g-REF datasets did not require resolving
relationships. Moreover, recent research [9] pointed out that the bias existed in the RefCOCO
datasets. In this case, one may achieve high performance without any queries. To address
this issue, Liu et al.constructed an approximately unbiased dataset called CLEVR-Ref+ [29] to
measure the reasoning ability of the models more accurately. Moreover, to evaluate the reasoning
ability of the models across multiple similar images, Chen et al.introduced a new dataset called
Cops-Ref [7] for the Compositional Referring Expression Comprehension task, which involves
localising a region from a set of images. In this article, we evaluate our method on the complex
referring expression comprehension (c-REF) task with CLEVR-Ref+ [29], Ref-Reasoning [56], and
CLEVR-CoGenT [29] datasets. Note that these datasets are more challenging since they not only
reduce the statistical biases but also require long-chain reasoning ability to comprehend complex
queries.
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2.3 Graph Neural Networks

Graph Neural Networks (GNNs) become one of the mainstream methods of reasoning gradu-
ally, and the variants (e.g., Graph Attention Network (GAT) [45] and Gated Graph Neural Net-
works (GGNNs) [28]) have been applied to several sophisticated tasks [17, 20, 60]. Recently,
some works [23, 47, 54, 55] attempted to perform relational reasoning on the graphs. Specifi-
cally, LGRANs [47] adopted GAT to perform reasoning by aggregating the information for each
graph node from its neighbourhoods. However, these methods performed reasoning in a one-step
manner, while the complex queries require multi-step reasoning to be solved. DGA [55] and CM-
RIN [54] considered the relationships among the objects in a neighbourhood distance, but they
ignored the attribute relationships between the objects (e.g., two objects have the same colour).
Moreover, LCGN [17] performed multi-step reasoning with a fully-connected graph. However, it
did not distinguish different types of information in the query, leading to insufficient comprehen-
sion of the complex query. Jing et al. [23] modelled the relational reasoning process as reinforce-
ment learning and conducted reasoning based on a graph. Unlike these methods, our Trans-RINet
refines the relation representation with visual and location relations, which is helpful for complex
relationship modelling. Moreover, we conduct multi-step reasoning with two relational graphs
corresponding to visual and location relations, which is achieved by iteratively updating the graph
representations.

2.4 Transformer

Transformer has first been proposed in [44] for addressing the neural machine translation task. Due
to a self-attention mechanism in Transformer that can make the entities connect and interact with
each other freely, Transformer has achieved excellent performance in language [10, 40], vision [4,
11], and vision&language [5, 19] fields.

2.4.1 Language Field. Many transformer-based models [10, 40] have been proposed and
achieved promising performance. Specifically, BERT [10] stacked the Transformer encoder, and
achieved better performance due to the bidirectional pre-training for language representations.
T5 [40] transformed many Natural Language Processing (NLP) tasks into generation tasks, which
had the potential to address all of the NLP tasks in one model.

2.4.2 Vision Field. Due to the success of Transformers in the language field, a series of
transformers-based models [4, 11] have been applied to the vision field. Imitating the input of
the Transformer in the language field, ViT [11] decomposed the image into some patches, and
showed that a pure Transformer can achieve excellent performance on image classification. More-
over, DETR [4] formulated object detection as a set of prediction problems, and achieved better
performance.

2.4.3 Vision & Language Field. Inspired by BERT [10], some visual-linguistic pre-training (VLP)
based methods [5, 15, 31] have been proposed to jointly learn the representation of images and texts.
In general, these models contained several transformer encoder layers and took the object propos-
als and texts as inputs. These methods achieved good performance in many downstream tasks by
fine-tuning. Other methods [19, 52] regarded Transformer as a feature updater, and performed the
target task end-to-end, without pre-training. In Trans-RINet, we follow this paradigm and adopt
Transformer to consider both the intra- and inter-modality relationships, and promote the inter-
action between the modules. Moreover, Guan et al. [12] adopted the same Transformer [44] to
fuse the multiple embeddings of each user and item, respectively, where the fusion occurs intra-
modality. Instead, in our Trans-RINet, we adopt a Transformer to fuse both objects and query
information, which is cross-modality.
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Fig. 3. Overview of Transformer-based Relational Inference Network (Trans-RINet) that contains four com-
ponents. The language decomposition module decomposes the query into four types. The Transformer-based
object attention module finds the relevant objects according to the information of the properties. With the
relational graphs, the Transformer-based relational inference module captures the complex logic by a multi-
step reasoning method. A multimodal interaction module lets each module interact with the other freely.
The final score is obtained by matching the language and the corresponding object representations.

3 TRANSFORMER-BASED RELATIONAL INFERENCE NETWORK

In this article, we seek to construct a model to conduct visual relational reasoning guided by a
complex query and then localise a target in an image. We find that the c-REF task requires a
strong reasoning ability to localise a target, which is suitable as a test bed to evaluate our method.
Formally, given a query r and its corresponding image I with N objects O = {oi }Ni=1, the aim of
c-REF is to localise the target object o� by conducting reasoning among the objects O, guided
by r .

Since the queries usually contain rich information that refers to multiple objects and their re-
lationships, how to fully comprehend them and how to perform reasoning over several objects
guided by these queries are challenging. To address the above challenges, we first decompose the
query into different types of information to reduce the difficulty of understanding. We further
devise a functional module for each type of information. In each module, we consider both the
intra- (i.e., between the objects) and inter-modality relationships (i.e., between the queries and the
objects) to help localise the target. To comprehend the complex logic in a query, we first trans-
form an image into a relational graph, where the nodes are the objects, and the edges are their
relationships. Then, we propose a graph-based multi-step reasoning method to update the graph
progressively, guided by the query. Since each type of query is closely related, we further consider
letting each module interact with each other before making a decision.

As shown in Figure 3, our Trans-RINet contains four components. Specifically, the language

decomposition module first decomposes the query r into four types, and obtains the correspond-
ing language representations (i.e., s

att , s
loc , s

r el_vis , and s
r el_loc ). Then, the Transformer-based

object attention module adopts the visual features and location features to represent each ob-
ject, and finds the candidate objects that are relevant to r guided by s

att and s
loc . To perform

multi-step reasoning, the Transformer-based relational inference module constructs two re-
lational graphs among objects and their relationships, and then updates the corresponding node
representations progressively with GGNNs under the guidance of s

r el_vis and s
r el_loc , respectively.
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Next, the multimodal interaction module promotes the communication between each module
to achieve the aim of interaction. Last, we match the updated object representations with the
corresponding language representations to obtain the final score.

3.1 Preliminary

3.1.1 Transformer. Due to the powerful relationship modelling ability of Transformer [44], it
has achieved promising performance in vision&language [5, 19] field. We seek to take advantage
of the strength of the Transformer to improve the reasoning ability. To detail our Trans-RINet, we
first briefly review the main idea of the Transformer.

3.1.2 Self-Attention Mechanism. Different from the traditional attention mechanism [53], a self-
attention mechanism is able to make the entities connect and interact with each other freely. Based
on the multi-head self-attention mechanism, the Transformer enables to model both inter- and
intra-modality relationships in a homogeneous way. For example, an object is allowed to attend
to other objects and queries simultaneously. Specifically, given a feature vector f ∈ Rl×d , the
self-attention mechanism can be formulated as:

f̃ = softmax

(
(WQ f ) (WK f )�

√
d

)
(WV f ), (1)

where WQ ,WK ,WV are learnable parameters, 1√
d

is the scaling factor, and f̃ ∈ Rl×d is the up-

dated feature. In practice, a standard Transformer usually contains multiple self-attention layers,
feed-forward networks, and residual connections [14]. Formally, we use Φ(f ; W) to denote the
Transformer layer, where W is the corresponding parameters.

3.2 Language Decomposition Module

As shown in Figure 1, queries in c-REF usually refer to multiple objects and their relationships,
which can be decomposed into four types of information, i.e., (1) basic attributes: object category,
size, colour and material; (2) absolute location: the absolute location of the objects in the image;
(3) visual relationship: the relationships between objects (e.g., the objects have the same attribute
or the interaction between the objects); and (4) relative location: the displacement between objects.

Due to the complexity of the queries, some methods [2] used an off-the-shelf language
parser [62] to help comprehend the queries. However, as mentioned in [58], the off-the-shelf parser
could raise irreparable parsing errors, which is harmful to the models. Thus, rather than relying
on the off-the-shelf language parser, following [47] and [58], we adopt a self-attention mechanism
to automatically parse the query.

Given a query with L words r = {wl }Ll=1, we first transform them into the word embed-

dings {el }Ll=1 by adopting a non-linear mapping function or pre-trained word embeddings (e.g.,
GloVe [37]). Then, we feed the word embeddings to a Bi-LSTM model [42] to obtain the forward
and backward hidden state vectors, and the word representations h = {hl }Ll=1 are obtained by
concatenating the forward and backward hidden vectors of the words. To obtain the language
representations, we require calculating the attention score for each word in each module. For this
purpose, we apply a fully connected layer to the representations, and then normalise the scores
with a softmax function. In practice, we calculate the attention scores of basic attributes aatt

l
,

absolute location aloc
l

, visual relationship ar el_vis
l

and relative location ar el_loc
l

as follows:

a
type

l
=

exp
(
w

type
a

�
hl

)
∑L

k=1
exp

(
w

type
a

�
hk

) , (2)
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where type ∈ {att , loc, rel_vis, rel_loc}, w
type
a ∈ Rdw is the parameters unique for each module,

and dw is the dimension of the word embeddings. Based on the attention scores for each mod-
ule (i.e., a

att , a
loc , a

r el_vis , a
r el_loc ∈ RL), we obtain each type of the language representations

by:

s
type =

L∑
l=l

a
type

l
· el . (3)

3.3 Transformer-based Object Attention Module

In this module, we seek to find the relevant objects according to the information of the prop-
erties (i.e., the basic attributes and absolute location) in a query. To achieve this, we propose a
Transformer-based object attention module. Specifically, we represent each object with its attribute
and location features. Then, under the guidance of s

att and s
loc , we update the object represen-

tations by considering the intra- and inter-modality relationships, which can be achieved in a
Transformer.

3.3.1 Basic Attributes Representation. The basic attributes describe the object attributes (e.g.,
shape and material), which are included in the visual features. Thus, we adopt the visual features
to represent the basic attributes. Specifically, the visual feature ui of object i is obtained by adopt-
ing a pre-trained feature extractor (e.g., ResNet-101 [14]). Then, we obtain the basic attributes
representation of object i by encoding the visual features by a multi-layer perception (MLP) f u ,
i.e., x

att
i = f u (ui ).

3.3.2 Absolute Location Representation. The absolute location represents the absolute location
of the objects in an image. Suppose the width and height of the image are represented as [W ,H ],
and the top-left corner coordinate, bottom-right corner coordinate, width and height of object i
are represented as

[
xt li
,yt li
,xbri
,ybri
,wi ,hi

]
, then the location feature of object i is represented

as a 5-dimensional vector li = [
xt li

W
,

yt li

H
,

xbri

W
,

ybri

H
, wi ·hi

W ·H ]. It denotes the top-left and bottom-right
corner coordinates of the object region (normalised between 0 and 1) and its relative area (i.e.,
the ratio of the bounding box area to the image area). Since the visual features may also contain
the location information of the object from the background, we concatenate the visual feature
with the location feature to obtain the location representation of object i as x

loc
i = [f u (ui ), f l (li )],

where f l is an MLP and [·, ·] denotes for concatenation.

3.3.3 Transformer-Based Object Attention Module. Considering the inter-modality relation-
ships (i.e., between the queries and objects) only to localise the target may not be enough to achieve
better performance, while introducing the intra-modality relationships (i.e., between the objects)
would be helpful. Thus, it is necessary to consider both the inter- and intra-modality relationships
when localising the target. Fortunately, the multimodal Transformer meet our need. Specifically,
following M4C [19], we apply a stack of L Transformer layers over the list of the query features s

obj

and object features X
obj = {xobj

i }Ni=1, where obj ∈ {att , loc}. In this way, the Transformer is able
to take advantage of the self-attention mechanism to consider both the inter- and intra-modality
relationships to update the features, which can be formulated as:

[ŝobj , X̂obj ] = Φ([sobj ,Xobj ]; W
obj ), (4)

where [·, ·] denotes for concatenation, W
obj is the learnable parameters of the Transformer. The

overall process is shown in (a) of Figure 4.
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Fig. 4. Overview of the Multimodal Transformer layers in Trans-RINet for visual relational reasoning.

3.4 Transformer-based Relational Inference Module

To fully comprehend the complex logic in the query, we consider constructing a relational graph
as a reasoning basis to conduct reasoning. To this end, we first transform the image into a graph,
where the nodes correspond to the objects and the edges denote their relationships. As referred to
in Section 2.3, for each object, adopting one-step reasoning cannot guarantee to capture the multi-
hop relationships between other objects, which makes it difficult to understand the complex logic.
Thus, for each node, we devise a multi-step reasoning method that adopts GGNNs to progressively
update the node representations by aggregating the information from the neighbourhoods, guided
by s

r el_vis and s
r el_loc , respectively. Before introducing the multi-step reasoning method, we first

detail how to construct relational graphs.

3.4.1 Graph Construction. We construct a directed graph G= {V,E} over the objects O, where
V = {vi }Ni=1 is the node set and E = {ei j }Ni, j=1 is the edge set. Each nodevi corresponds to an object
oi ∈ {O} and each edge ei j denotes the relationships between the objects oi and oj .

3.4.2 Visual Relationship Representation. The visual relationship describes the relationships be-
tween objects, including but not limited to the attribute relationships between two objects (e.g.,
A and B are in the same colour) or the interaction between objects (e.g., A holds B). To this end,
we concatenate these two object features to represent the visual relationship. As mentioned in
Section 3.3, the feature of object i is obtained by concatenating its visual feature and location fea-
ture x

vis
i = [ui , li ]. Then, the edge representation of the visual relationship between object i and

object j is calculated by using an MLP f r el_vis to encode these two object features:

e
r el_vis
i j = f r el_vis

( [
x

vis
i , x

vis
j

] )
. (5)

3.4.3 Relative Location Representation. The relative location describes the displacement be-
tween two objects, implying the spatial correlation between the objects. Here, we represent the

spatial relationship between two objects (e.g.,vi andvj ) as ẽi j =[
xt lj
−xci

wi
,

yt lj
−yci

hi
,

xbrj
−xci

wi
,

ybrj
−yci

hi
,

w j ·hj

wi ·hi
], where [xci

,yci
,wi ,hi ] is the centre coordinate, width and height of object i , and [xt lj

,

yt lj
,xbr j
,ybr j
,w j ,hj ] is the top-left corner coordinate, bottom-right corner coordinate, width and

height of the j-th object, respectively. Considering the query like “A is at the right of B”, the object
“B” plays an important role in the understanding of the location relationship. In this sense, we in-
clude the visual feature and location feature of the object j for the relative location representations
of the object i . Thus, the edge representation of the relative location is calculated as follows:

e
r el_loc
i j = f r el_loc

( [
ẽi j , x

vis
j

] )
, (6)

where f r el_loc is an MLP. After learning the edge representation, we would obtain two types of
visual relational graphs.
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3.4.4 Transformer-based Relational Inference Module. Similar to that in Section 3.3.3, we also in-
troduce the multimodal Transformer to consider the inter- and intra-modality relationships. Specif-
ically, we apply a stack of L Transformer layers over the list of the query features s

r el and edge
features e

r el , where rel ∈ {rel_vis, rel_loc}. For one sample, we suppose the inputs are s
r el ∈ Rde

and {er el
i j }Ni, j=1, where e

r el
i j ∈ Rde . We concatenate these two types of features and then send them

into the multimodal Transformer to obtain the updated features, which can be formulated as:[
ŝ

r el ,
{
ê

r el
i j

}N

j=1

]
= Φ

( [
s

r el ,
{
e

r el
i j

}N

j=1

]
; W

r el
)
, (7)

where [·, ·] is a concatenation operation and Wr el is the learnable parameters of the Transformer.
As shown in Equation (7), it updates the relational features for object i only. In this sense, we would
repeat this operation for N times to obtain the updated relationships feature matrix {êr el

i j }Ni, j=1. The
overall process is shown in (b) of Figure 4.

To achieve the multi-step reasoning, based on the relational graphs, we introduce GGNNs [28]to
progressively update the node representations by aggregating the relational information from the
neighbourhoods. Specifically, GGNNs are a propagation model, whose mechanism is similar to
recurrent neural networks. Before performing the multi-step reasoning with GGNNs, we require
a propagation matrix. As shown in Equation (7), the Transformer adopts the self-attention mech-
anism to calculate the similarity between each entity, which contains a wealth of guidance infor-
mation. Thus, we seek to use the self-attention matrix from the Transformer as the propagation
matrix. As shown in Equation (1), we would obtain the attention matrix A ∈ Rl×l . Generally speak-
ing, self-attention usually contains some heads H , aiming to focus on different directions. In this
sense, the attention matrix can be reformulated as A ∈ RH×l×l . Thus, the self-attention matrix
in the Transformer-based relational inference module is A ∈ RN×H×(N+1)×(N+1) , where (N + 1)
means the input contains N object relational features and 1 language feature. Note that we obtain
the attention matrix at the last Transformer layer.

Obtain the Propagation Matrix. Based on the self-attention matrix A in the Transformer-based
relational inference module, we provide two methods to obtain the propagation matrix. One in-
tuitive way is to adopt mean operations on the dimension of the attention head as Amean ∈
R

N×1×(N+1)×(N+1) . Moreover, according to the self-attention in Equation (1), the softmax operates
on the features at the last dimension. To maintain the softmax operation at the last dimension
and reduce the number of dimensions in the attention matrix, we would also adopt the mean op-
eration at the penultimate dimension of the attention matrix. Finally, since the attention matrix
contains the information about the language, we remove the dimension of the language feature in
the attention matrix, and obtain the final propagation matrix Amean ∈ RN×1×1×N .

Another method to obtain the propagation matrix is to imitate the multi-head self-attention
fusion mechanism. Specifically, given the initial attention matrix A ∈ RN×H×(N+1)×(N+1) , to reduce
the dimension, we first adopt the mean operation at the penultimate dimension of the attention
matrix to retain the softmax operation at the last dimension (i.e., Ahead ∈ RN×H×1×(N+1)). Next,
we remove the dimension of the language feature in the attention matrix, and obtain the final
propagation matrix with attention head Ahead ∈ RN×H×1×N . We will conduct the ablation studies
about these two propagation matrices in Section 4.6.

Multi-Step Reasoning. Based on the propagation matrix A
r el
mean , for each object node in the graph,

the propagation process of the t th step is defined as follows:

z
r el, (t )
i = tanh

(
a

r el
mean,i

� [
h

r el, (t−1)
1 ; . . . ; h

r el, (t−1)
N

] )
,

h
r el, (t )
i = GRUCell

(
z

r el, (t )
i , h

r el, (t−1)
i

)
,

(8)
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where rel ∈ {rel_vis, rel_loc} and a
r el
mean,i is the ith row of the propagation matrix A

r el
mean ∈ RN×N .

GRUCell is a one-step GRU [8] updating mechanism. h
r el, (t )
i is the hidden state of the ith object at

step t .
Moreover, with the propagation matrixAr el

head
at hand, we first transpose it as A

r el
head

∈ RH×N×N ,

and then split the last dimension of the hidden state h
(r el ),t
i into H × de

H
. In this way, we obtain

the hidden states h
(r el ),t ∈ RH×N× de

H . Similar to that using A
r el
mean , for each node in the graph, the

propagation process of the t-th step can be calculated as follows:

z
r el, (t )
i = tanh

(
a

r el
head,i

[
h

r el, (t−1)
1 ; . . . ; h

r el, (t−1)
N

])
,

h
r el, (t )
i = GRUCell

(
flatten

(
z

r el, (t )
i

)
, flatten

(
h

r el, (t−1)
i

))
,

(9)

where a
r el
head,i

∈ RH×1×N , h
r el, (t−1)
i ∈ RH×1× de

H , flatten means that flattening the feature into one
dimension.

Note that no matter which propagation matrix is used, we obtain the initial hidden state h
r el, (0)
i

by adopting the mean operation on the penultimate dimension of the updated relationships feature

matrix h
r el, (0)
i = ê

r el
i = meanj ({êr el

i j }Ni, j=1).
In this way, at each time step, we update the node representations by aggregating the informa-

tion from the neighbourhoods guided by the propagation matrix. Thus, the multi-step updating
method enables each object to aggregate the relational information from the neighbourhoods and
progressively understand the complex logic in the queries. AfterT time steps for propagation, the
final representation for the ith node can be obtained by:

x̂
r el
i = h

r el, (T )
i . (10)

3.5 Multimodal Interaction Module

Since we decompose the query into four types, each type of query is closely related. Thus, it is
necessary to promote the interaction between each module corresponding to each type of in-
formation of the queries. Inspired by the self-attention mechanism of free interaction between
each entity, we also adopt a multimodal Transformer to connect the outputs generated from
each module. Specifically, with the four types of outputs at hand, namely, s

type and x̂
type
i , where

type ∈ {att , loc, rel_vis, rel_loc}, we regard each feature as one unique entity, and then promote
them to interact with each other in the stack of L Transformer layers, which can be formulated as:

Finput =
[
s

att , . . . , sr el_loc , x̂att
i , . . . , x̂

r el_loc
i

]
,[

s̃
att , . . . , s̃r el_loc , x̃att

i , . . . , x̃
r el_loc
i

]
= Φ(Finput ; W

f use ),
(11)

where [·, ·] denotes for concatenation, and W
f use is the learnable parameters of the Transformer.

In this way, each module interacts with the other freely, improving information circulation, which
helps make a prediction. The overall process is shown in (c) of Figure 4.

3.6 Matching Function and Loss Function

3.6.1 Matching Function. To localise the target object, we choose the object with the highest
matching score. To this end, we require to obtain the matching scores for each object. Specifically,
we devise a matching function to predict the final scores by matching the language representations
and the corresponding object representations, where the object representations and the language
representation are obtained by Equation (11). The matching score p

type
i between the language
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ALGORITHM 1: Training details of our Trans-RINet.

Require: Training data {(Ik , rk ,yk )}K
k=1, updating step T , training iterations D.

repeat

// Language Decomposition Module, type ∈ {att, loc, rel_vis, rel_loc}
Calculate the word attention

{
a

type

l

}L

l=1
using Equation (2).

Obtain the query representations stype using Equation (3).
// Transformer-based Object Attention Module, obj ∈ {att, loc}
Obtain the object representation x̂

obj
i using Equation (4).

// Transformer-based Relational Inference Module, rel ∈ {rel_vis, rel_loc}
Construct the relational graphs G via Equations (5) and (6).
repeat

Obtain the object representation x̂
r el
i through GGNNs using Equation (8).

until Reasoning steps reach T.
Let each module interact with each other by Equation (11).
Calculate the matching scores p

type
i between s̃

type and x̃
type
i using Equation (12).

Obtain the final scores p using Equation (14).
Update the parameters of Trans-RINet by minimising the loss in Equation (15).

until Iteration times reach D.

representation s̃
type and the ith object representation x̃

type
i can be calculated as follows:

p
type
i = (s̃type )�x̃

type
i , (12)

where type ∈ {att , loc, rel_vis, rel_loc}. Following [47] and [58], we calculate four weights to
represent the contributions of each module. To this end, we apply a fully connected layer to the
mean embedding vector e = meanl ({el }Ll=1), where el is the word embedding of lth word in the
query. The calculation of the weights is as follows:

[watt ,w loc ,wr el_vis ,wr el_loc ] = softmax (Ws e) , (13)

where Ws ∈ R4×dw is the parameters of the fully connected layer, and dw is the dimension of the
word embedding. For object i , the final matching score pi is calculated by weighted summing up
of the p

type
i with four weights:

pi =
∑
type

wtypep
type
i . (14)

3.6.2 Loss Function. Since we localise the referent from the candidate objects in the image, we
regard this task as a multi-class classification task. The probability of object i being the referent is

calculated as p̃i =
exp (pi )∑N

j=1 exp (pj )
. Intuitively, we would use the cross-entropy loss as the loss function:

L = −
N∑

i=1

yi · log (p̃i ) , (15)

where yi is 1 when object i is the referent and 0 otherwise. The training details of our Trans-RINet
can be found in Algorithm 1.

4 EXPERIMENTS

In this section, we evaluate our Trans-RINet on complex referring expression comprehension
datasets, including the synthetic dataset (i.e., CLEVR-Ref+ [29]) and real-world dataset (i.e.,
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Table 1. Details of CLEVR-Ref+ and CLEVR-CoGent Datasets

CLEVR-Ref+ dataset CLEVR-CoGent dataset
Split #Expressions #Images Split #Expressions #Images
Train set 222569 63057 Train set 222474 62981

Val set 47731 13534
ValA set 47638 13518
ValB set 47723 13489

Ref-Reasoning [56]). Moreover, we further conduct experiments on the CLEVR-CoGenT [29]
dataset to demonstrate the effective generalisation ability of our Trans-RINet. Last, the ablation
studies and visualisation analyses are conducted to show the contribution of each module in our
method.

4.1 Datasets and Metrics

CLEVR-Ref+ [29] and CLEVR-CoGenT [29] are synthetic datasets whose images and queries
are generated by the code automatically. These datasets are approximately unbiased by adopting a
uniform sampling strategy. Moreover, the CLEVR-CoGent dataset has two different conditions (i.e.,
Condition A and Condition B) that contain different object attributes.
Ref-Reasoning [56] is a large-scale real-world dataset, which contains semantically rich queries
that describe objects, attributes, and their direct or indirect relations. Specifically, it includes ap-
proximately 79k queries and 83k images.

Metrics. We adopt Top-1 Accuracy to evaluate the methods. Specifically, we conduct experi-
ments on the referring expression comprehension task, which involves localising a single target
object within an image. To evaluate the accuracy of our method on the CLEVR-Ref+ and CLEVR-
CoGenT datasets, we follow the prior works [17] by collecting and using only those expressions
that describe a single target object for both training and testing. The specifics of this data collection
process can be found in Table 1.

4.2 Implementation Details

On the CLEVR-Ref+ and CLEVR-CoGenT dataset, we follow the settings in [17] and obtain the
region feature of each object by using ResNet101 [14] pre-trained on ImageNet. We evaluate
our method in two settings: (i) “det”: bounding boxes detected by Mask-RCNN [13];1 (ii)“gt”:
ground truth bounding boxes. The queries are encoded with a non-linear mapping function. On
the Ref-Reasoning dataset, we adopt the 2048-dimensional visual features of objects provided by
the dataset and encode the queries with GloVe word embedding [37]. During training, we use
Adam [27] optimiser with the learning rate 1e-4. The updating step of GGNNs is set to 3. Follow-
ing [47], we set the dimensions of the language and object representations to 512. We implement
our method based on PyTorch [36].

On the CLEVR-Ref+ and CLEVR-CoGenT datasets, the batch size is set to 30 images, which
means that we feed 30 images and all the queries associated with these images to the network
for each training iteration. On the Ref-Reasoning dataset, for MGA-Net, due to the limitation of
the GPU memory, we set the batch size of 32 queries, which means we feed the MGA-Net with
32 queries and the associated images as the input. Similarly, the batch size is set to 25 queries
for Trans-RINet. For Trans-RINet, on the CLEVR-Ref+ and CLEVR-CoGent datasets, we set all the
multimodal transformers with 2 layers and 4 self-attention heads. All the multimodal transform-
ers are set to 3 layers and 4 self-attention heads on the Ref-Reasoning dataset. We conduct most

1We use the pre-trained Mask-RCNN from https://github.com/kexinyi/ns-vqa.
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Table 2. Comparisons with
State-of-the-Art Methods on the
CLEVR-Ref+ Dataset in Terms of

Accuracy (%)

Method Accuracy (%)
Stack-NMN [16] 56.5
SLR [59] 57.7
MAttNet [58] 60.9
GroundeR [41] 61.7
LCGN [17] 74.8
LCGN [17] (gt) 76.0
RPR [23] (gt) 77.7
MGA-Net [61] (det) 80.1
MGA-Net [61] (gt) 80.8
Trans-RINet (det) 93.2
Trans-RINet (gt) 94.1

experiments on one TITAN Xp GPU, except that we use V100 GPU on the Ref-Reasoning dataset
in Trans-RINet. The source code and the pre-trained models are available at Trans-RINet.

4.3 Evaluation on the CLEVR-Ref+ Dataset

We compare our Trans-RINet with several state-of-the-art methods, i.e., Stack-NMN [16], SLR [59],
MAttNet [58], GroundeR [41], LCGN [17], RPR [23], and MGA-Net [61]. From Table 2, our method
outperforms all compared methods. Specifically, MAttNet performs reasoning in a one-step man-
ner, ignoring the issue of long-chain reasoning, and thus obtains the accuracy of 60.9%. Beneficial
from the multi-step reasoning, LCGN and RPR surpass MAttNet by around 14%, and 17%, respec-
tively. However, these methods encode the queries holistically, without distinguishing different
types of information. Moreover, MGA-Net decomposes the query into four types and conducts
multi-step reasoning on the relational graphs with GGNNs, and obtains an accuracy of 80.1% in
the “det” setting. Moreover, MGA-Net would further improve the accuracy to 80.8% when in the
“gt” setting.

However, MGA-Net still encounters two limitations: First, only considering the inter-modality
relationships may not be enough to tackle the complex queries, while introducing the intra-
modality relationships would improve the reasoning ability of the model. Second, MGA-Net tack-
les each module isolatedly, which however, may achieve unsatisfactory performance. To address
the above issues, our Trans-RINet introduces the multimodal transformer that can promote the
entities connecting and interacting with each other freely. Thus, as shown in Table 2, our Trans-
RINet achieves an accuracy of 93.2%, which outperforms MGA-Net by approximately 13%. When
using the ground truth bounding boxes, Trans-RINet further improves the performance to 94.1%.
These results demonstrate the effectiveness and necessity to further consider the intra-modality
relationships and the interaction between each module.

Moreover, we show the curve of training and testing Loss and Accuracy of Trans-RINet in Fig-
ure 5. From these results, we have the following observations: (1) As the training epoch increases,
the training and testing loss converges gradually. (2) The training and testing accuracy are also
converged with the training process going on. These results demonstrate our Trans-RINet has a
stable training procedure.
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Fig. 5. The curve of training and testing Accuracy and Loss of Trans-RINet on the CLEVR-Ref+ dataset.
Trans-RINet uses Ahead as propagation matrix, and sets updating step T to 3.

Table 3. Comparisons of Different
Methods on the Ref-Reasoning Dataset

about Validation and Test Splits in
Terms of Accuracy (%)

Method val (%) test (%)
CNN 12.36 12.15
CNN+LSTM 42.38 42.43
CMRIN [54] 47.40 47.69
DGA [55] 48.95 49.51
SGMN [56] 51.59 51.95
RPR [23] 52.22 53.02
MGA-Net [61] 56.37 56.67
Trans-RINet 56.75 57.55

4.4 Evaluation on the Ref-Reasoning Dataset

To further demonstrate the effectiveness of our methods, we compare some state-of-the-art meth-
ods (e.g., CMRIN [54], DGA [55], SGMN [56], and RPR [23]) on the large-scale real-world dataset
(i.e., the Ref-Reasoning [56] dataset). We present the experimental results in Table 3. From these
results, we have the following observations: (1) Our MGA-Net achieves the best performance com-
pared with the state-of-the-art methods. Specifically, MGA-Net outperforms CMGIN, DGA, SGMN,
and RPR by approximately 8%, 6%, 4%, and 3%, respectively, on both the validation and test split.
(2) Moreover, our Trans-RINet further surpasses the MGA-Net by approximately 1% on the test
split. These results demonstrate the effectiveness of our MGA-Net and Trans-RINet on the com-
plex real-world dataset.

4.5 Evaluation on the CLEVR-CoGenT Dataset

To demonstrate the generalisation ability of our method, we further conduct experiments on the
CLEVR-CoGent dataset. Specifically, the training set is in Condition A, while the validation set is
in Conditions A and B. From the results in Table 4, our Trans-RINet outperforms SLR [59], MAt-
tNet [58], and MGA-Net [61] by a large margin. Specifically, our Trans-RINet outperforms MGA-
Net by approximately 10% on valA and valB, either ground truth or detected bounding box. These
results demonstrate that further considering the intra-modality relationships and the interaction
between each module would promote the generalisation ability of the models.
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Table 4. Comparisons with Baselines on
the CLEVR-CoGenT Dataset (valA & B)

in Terms of Accuracy

Method valA valB
SLR [59] 0.63 0.59
MAttNet [58] 0.64 0.63
MGA-Net [61] (det) 0.82 0.76
MGA-Net [61] (gt) 0.83 0.78
Trans-RINet (det) 0.93 0.86
Trans-RINet (gt) 0.94 0.87

“det” means detected bounding boxes, while
“gt” denotes ground-truth bounding boxes.

Table 5. Impact of the Four Modules
Corresponding to Each Type of the Queries in

Trans-RINet on the CLEVR-Ref+ Dataset in Terms
of Accuracy (%)

Module Accuracy (%)
att 73.52
att + loc 78.89
att + loc + rel_vis 80.95
att + loc + rel_loc 83.96
att + loc + rel_vis + rel_loc 85.81

Note that on the CLEVR-Ref+ and CLEVR-CoGenT datasets, our Trans-RINet achieves compa-
rable performance between the “det” and “gt” settings. The main reason is that the scenes of the
images are pure and simple, without introducing noise, and thus the detectors are able to detect
the objects in the scenes accurately.

4.6 Ablation Study

4.6.1 Effect of Four Modules. Our Trans-RINet contains four modules corresponding to each
type of the queries (i.e., the basic attributes (att), absolute location (loc), relative location (rel_loc),
and visual relationship (rel_vis)). We conduct ablation studies on the CLEVR-Ref+ dataset to eval-
uate each module. We use the “gt” setting and set the updating step T to 3.

From the results in Table 5, directly adopting the basic attribute to localise the target obtains the
accuracy of 73.52% (Row 1). When introducing the absolute location module, the accuracy would
further improve (Row 2). Row 3 or Row 4 show the benefits brought by the relational reason-
ing modules, demonstrating the effectiveness of multi-step reasoning. Moreover, when combining
four modules, our Trans-RINet obtains the best accuracy of 85.81%. The above results imply that
distinguishing different types of information in the query is crucial for relational reasoning.

4.6.2 Effect of the Multimodal Interaction Module. To evaluate the multimodal interaction mod-
ule mentioned in Section 3.5, we conduct ablation studies about with or without multimodal inter-
action module based on Trans-RINet that uses Ahead as the propagation matrix. From the results
in Table 6, we have the following observations: (1) our Trans-RINet outperforms that w/o interac-
tion for any updating steps, which demonstrates the effectiveness and necessity of promoting the
interaction between each module; (2) With the increase of the updating step, the performance gap
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Table 6. Ablation Studies about the Multimodal
Interaction Module on the CLEVR-Ref+ Dataset

Dataset Setting
Trans-RINet

w/o interaction
Trans-RINet

CLEVR-Ref+
gt bbox

T = 0 80.92 82.51
T = 1 83.32 85.93
T = 3 85.81 93.60
T = 5 84.34 94.02

We use the Trans-RINet as the base model with Ahead as the
propagation matrix. Note that “w/o interaction” denotes without
introducing the multimodal interaction module.

Table 7. Ablation Studies about Different Types of Propagation matrix (i.e., Amean and Ahead ) on the
CLEVR-Ref+, CLEVR-CoGenT (valA & valB), and Ref-Reasoning Datasets

Method Dataset CLEVR-Ref+ CLEVR-CoGenT (valA) CLEVR-CoGenT (valB) Ref-Reasoning
- Setting detected bbox gt bbox detected bbox gt bbox detected bbox gt bbox val test

Amean

T=1 84.81 87.44 85.17 87.34 79.01 81.37 56.39 56.74
T=3 91.50 94.19 93.59 94.65 86.81 87.55 56.60 57.21
T=5 92.08 94.02 91.13 91.28 84.28 84.10 56.74 57.45

Ahead

T=1 85.73 85.93 85.43 88.71 78.74 80.95 56.59 56.78
T=3 93.21 93.60 91.88 94.82 84.65 87.90 56.75 57.55

T=5 91.19 94.02 91.58 92.11 84.54 84.87 56.65 57.40

between Trans-RINet and Trans-RINet w/o interaction gradually increases, which demonstrates
the importance of promoting the interaction of each module in the reasoning process.

4.6.3 Effect of Different Propagation Matrices (i.e., Amean and Ahead ). As mentioned in Sec-
tion 3.4.4, we provide two types of propagation matrices when performing multi-step reasoning.
Thus, in this part, we provide the ablation study to evaluate different propagation matrices. We
show the experimental results in Table 7. From these results, both Amean and Ahead achieve com-
parable performance. These results demonstrate that in the reasoning process, adopting the mean
operation on the dimension of the self-attention head has a similar effect to that of retaining the
self-attention head, to some extent.

4.7 Effectiveness of Multi-step Reasoning

4.7.1 Quantitative Results. We conduct ablation studies on our methods (i.e., MGA-Net and
Trans-RINet) about the multi-step reasoning by setting different updating steps T in GGNNs. As
shown in Table 8, our methods with GGNNs (T > 1) perform better than those without GGNNs
(T = 0) significantly regardless of the datasets, demonstrating the necessity and superiority of
relational reasoning. Moreover, by increasing the updating step (from T = 1 to T = 3), the per-
formance would further improve, which demonstrates the effectiveness of multi-step reasoning.
However, in most cases, our methods with updating step T = 3 perform better than that with
updating stepT = 5. The experiments demonstrate an appropriate updating step would obtain the
best performance.

To further investigate the relationship between the number of reasoning steps (T ) and the
model’s performance, we conducted additional experiments on the CLEVR-Ref+ dataset forT > 5
(e.g., T = 6, 7, 8) and presented the results in Table 9. From the results, we have the following
observations: (1) As the number of reasoning steps increases (from T = 1 to T = 5), the model’s
performance improves, highlighting the effectiveness of multi-step reasoning. Furthermore, our
Trans-RINet with T = 3 achieves a performance comparable to that of the model equipped with
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Table 8. Impact of the Updating Step T

MGA-Net
Dataset CLEVR-Ref+ CLEVR-CoGenT (valA) CLEVR-CoGenT (valB) Ref-Reasoning
Setting detected bbox gt bbox detected bbox gt bbox detected bbox gt bbox val test
T=0 75.81 76.51 76.00 76.24 71.37 72.32 55.05 55.38
T=1 79.52 80.25 79.01 79.15 74.26 74.53 56.08 56.12
T=3 80.18 80.87 82.02 82.90 76.60 78.15 56.37 56.55
T=5 79.05 79.65 79.95 80.36 74.69 76.00 56.19 56.67

Trans-RINet
T=0 80.11 82.51 80.86 81.77 73.92 74.92 55.90 56.32
T=1 85.73 87.44 85.43 88.71 79.01 81.37 56.59 56.78
T=3 93.21 94.19 93.59 94.82 86.81 87.90 56.75 57.55

T=5 92.08 94.02 91.58 92.11 84.54 84.87 56.74 57.45

We report the accuracy (%) of our methods (i.e., MGA-Net and Trans-RINet) with different updating step T on the
CLEVR-Ref+, CLEVR-CoGenT (valA & valB), and Ref-Reasoning datasets.

Table 9. Impact of the Updating Step T

Dataset Setting Trans-RINet

CLEVR-Ref+
gt bbox

T = 3 93.60
T = 5 94.02

T = 6 93.61
T = 7 93.38
T = 8 87.54

We report the accuracy (%) of our method on
the CLEVR-Ref+ dataset. We use the
Trans-RINet as the base model with Ahead

as the propagation matrix.

T = 5, while requiring fewer updates. Hence, selectingT = 3 may be a better choice; (2) WhenT is
greater than 5, the performance gradually declines, which may be attributed to the introduction of
noise by conducting more reasoning steps, since not all expressions require reasoning steps higher
than 5.

Note that on the Ref-Reasoning dataset, the performance improvement of our Trans-RINet
compared with MGA-Net is not as substantial as that on the CLEVR-Ref+ and CLEVR-CoGent
datasets. This phenomenon may be caused by the following reason. On the CLEVR-Ref+ and
CLEVR-CoGent datasets, the scene of the image is simple, and the maximum number of objects
is 10 without noises. Thus, when introducing the Transformer, our Trans-RINet would accurately
capture the relationships and achieve better performance. However, on the Ref-Reasoning dataset,
the maximum number of objects is more than 100, and thus the noise objects (e.g., background)
may exist. Since self-attention can achieve interaction between each entity freely, the noises may
affect the model performance.

4.7.2 Visualisation. To evaluate the ability of long-chain reasoning of our Trans-RINet, we visu-
alise the results at each reasoning step. Specifically, we train our Trans-RINet on the CLEVR-Ref+
dataset with the “gt” setting, and the updating step T in GGNNs is set to 3. Then, we obtain the
score for each node by matching the node representations with the language representations at
each updating step (i.e., T = 0, 1, 2, 3). Note that in the attention maps, the darker the colour, the
higher the confidence. As shown in Figure 6, our Trans-RINet decomposes the queries reason-
ably, and achieves accurate localisation at each reasoning step, which demonstrates the superior
reasoning ability of our Trans-RINet.
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Fig. 6. Examples of multi-step reasoning on complex queries with Trans-RINet. We visualise the attention
maps and mark the target object with a bounding box for each step.

Moreover, to better comprehend our Trans-RINet, we show the failure cases of our Trans-
RINet on the CLEVR-Ref+ dataset in Figure 7. From the results, we draw the following observa-
tions: (1) For simple samples that do not require too many reasoning steps, our Trans-RINet may
make incorrect predictions even when the reasoning process is correct. For instance, as shown in
Figures 7(a) and 7(b), the expressions require only one and two reasoning steps, respectively. Our
Trans-RINet exhibits correct reasoning steps, but misses the correct answer due to excessive rea-
soning steps. These results indicate that conducting too many reasoning steps for simple samples
could introduce noise, leading to incorrect predictions even with correct reasoning steps. In the
future, we will extend our method to achieve the dynamic reasoning steps for different samples.
(2) Although our Trans-RINet makes a correct final prediction, the intermediate reasoning process
may be incorrect. For example, as shown in Figure 7(c), our Trans-RINet makes a wrong prediction
at T = 0. These results demonstrate our Trans-RINet possesses the capability to correct errors to
some extent.

5 CONCLUSION

In this article, we have proposed a Trans-RINet for complex visual relational reasoning. To fully
comprehend the textual information, we decompose the complex query into four types and de-
vise a module for each type. In each module, we consider both the intra- (i.e., between the ob-
jects) and inter-modality relationships (i.e., between the queries and the objects) to help improve
the reasoning ability. Moreover, we construct relational graphs to represent the objects and their
relationships. Based on the relational graphs, we devise a graph inference network that adopts
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Fig. 7. Failure cases of our Trans-RINet on the CLEVR-Ref+ dataset [29]. We visualise the attention maps
and mark the target object with a bounding box for each step.

GGNN to update the graph representations progressively. In this way, Trans-RINet encodes the
multi-step relationships among objects. Before making the decision, we devise a multimodal fusion
module to make each module communicate with each other, since each module is closely related.
Extensive experiments show the effectiveness and the superior relational reasoning ability of our
Trans-RINet.
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