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a b s t r a c t

Parameter settings of support vector machine (SVM) have a great influence on its performance. Grid

search combining with cross-validation and numerical methods by minimizing some generalization

error bounds are two usually adopted methods to tune the multiple parameters in SVM. However, the

grid search is often time-consuming, especially when dealing with multiple parameters while the

hybrid strategy to combine a comprehensive learning particle swarm optimizer (CLPSO) with Broyden–

Fletcher–Goldfarb–Shanno (BFGS) method for effectively tuning the SVM parameters based on the

generalization bounds. Rather than locating a single local optimum, the hybrid method can identify

multiple local optima of the generalization bounds, which can greatly improve the stability of the

parameter settings. The experimental results show that the proposed method can efficiently tune the

parameters of both L1-SVM and L2-SVM and achieve competitive performance compared with other

optimized classifiers.

& 2010 Elsevier B.V. All rights reserved.
1. Introduction

Support vector machine (SVM) is a newly developed classifica-
tion technique, which aims at solving the classification problem
by maximizing the margin between two opposite classes [1,2].
One of the important tricks of SVM is the introduction of kernels,
which enable SVM to have the ability of dealing with infinite or
nonlinear features in a high dimensional feature space. Besides
SVM, kernel trick has also been widely used in many other
machine learning algorithms, such as principal component
analysis (PCA), linear discriminant analysis (LDA) and marginal
fisher analysis (MFA) etc., resulting in many powerful
kernel-based learning machines [3–5]. With kernels, the linear
techniques can be easily extended to handle nonlinear problems,
which have shown great improvements compared with the linear
methods in many real world applications, such as image
recognition, information retrieval and manifold data analysis
[6–8]. However, the performance of kernel methods strictly
depends on their hyperparameters, especially the kernel para-
meters that directly control the nonlinear mapping of the
features. Therefore, the tuning of parameters, known also as the
model selection, plays an important role in kernel methods. In this
paper, we mainly concentrate on the model selection of SVM,
which has gained great attentions in the last several years. A
simple and direct way is to use the grid search on the log-scale of
ll rights reserved.
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the parameters in combination with the cross-validation proce-
dure on each candidate parameter vector [9,10]. This is an usually
used parameter tuning method in other kernel methods [6,8].
However, the exhaustive grid search over the parameter space
may result in a large number of model trainings and unacceptably
long run time if there are multiple parameters. Another approach
is to minimize some generalization bounds, such as the leave-
one-out (LOO) error bounds, using numerical optimization
methods [11–14]. The numerical methods are generally more
efficient than grid search. However, owing to the non-convexity of
the generalization bounds, these methods may get stuck into local
optimum and cause instabilities [9,13]. In other words, the tuning
of parameters cannot be fully solved by the numerical optimiza-
tion methods, which are known for their fast convergence rate but
high sensitivity to the initial point. Recently, some global
stochastic optimization techniques, such as genetic algorithm
(GA), particle swarm optimization (PSO) and simulated annealing
(SA) algorithm have been adopted to tune the SVM parameters for
their better global search abilities [15–18]. These methods,
although can find the global solution in a high probability, are
limited by the facts that they usually suffer from the problem of
premature convergence, the slow convergence rate and the
convergence to a single point.

In this paper, we propose a CLPSO–BFGS method to adjust the
parameters of SVM based on two informed LOO bounds to address
the above problems. CLPSO is an improved version of PSO with
better global search abilities [19]. However, it still suffers from the
problem of slow convergence rate and the convergence to a single
solution, which makes it unreliable in real world applications if
the local optimum is not good enough. On the other hand,
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although sensitive to the starting point, the numerical optimiza-
tion methods usually possess very fast convergence rate to reach a
local optimum. Hence, in this paper we propose to combine the
global search ability of CLPSO and the local search ability of BFGS
to tune the SVM parameters. Different from the existing methods,
the hybrid method aims at effectively computing multiple global
optima of the multimodal functions and therefore can find a
group of candidate parameters for SVM. Finally, a better
parameter pair can be selected from these candidate parameters.

The remainder of this paper is organized into five sections.
Section 2 gives some preliminary studies about the informed LOO

bounds of SVM. The proposed method will be detailed in Section
3. The experiments are described in Section 4. The discussions and
conclusions of this paper are finally presented in Section 5.
2. Preliminary studies

2.1. SVM formulations

For a two-class classification problem, SVM finds a hyperplane
that maximizes the distance between the hyperplane and the
nearest sample of each class in the feature space [1]. There are
mainly two types of SVM for classification in practice, namely
L1-SVM and L2-SVM. Given l samples xiARm, i¼1,y, l with labels
yiA{71}, the SVM formulation with 1-norm of the slack variables,
named as L1-SVM, is as follows:

min
1

2
:w:2

þC:n:1

s:t yiðwFðxiÞþbÞZ1�xi, xi Z0 8i
ð1Þ

where xi denotes the slack variables, x¼[x1, x2,y, xl]0 and C

adjusts the training errors and the term 1=2:w:2
. Its dual form is

to solve the following quadratic optimization problem:

max WðaÞ ¼ eTa�
1

2
aT Qa

s:t: 0rairC,i¼ 1, . . . ,l

yTa¼ 0,

ð2Þ

where e is the vector of all ones, a represents the Lagrange
multipliers and Q is a l� l symmetric matrix with Q¼yiyjK(xi, xj).
K(xi, xj) denotes the inner product of FðxiÞ and FðxjÞ and F is a
nonlinear function that maps the input vector to a higher feature
space. In practice, K(xi, xj) is calculated through a kernel function
instead. Gaussian RBF kernel is one of the mostly used kernels and
defined as follows:

Kðxi,xjÞ ¼ exp �
:xi�xj:

2

2s2

 !
ð3Þ

where s is the kernel width parameter.
In L2-SVM, it uses the 2-norm of the slack variables xi in the

objective function. Thus it formulates as follows:

min
1

2
:w:2

þ
C

2
:n:2

2

s:t: yiðwFðxiÞþbÞZ1�xi, xi Z0 8i
ð4Þ

By introducing the Lagrange multipliers a, one can obtain its
dual form as follows:

max eTa�
1

2
aT Qþ

I

C

� �
a

s:t: aiZ0,i¼ 1,:::,l

yTa¼ 0:

ð5Þ

where I is an identity matrix. Given a new test sample x to be
classified, for both types of SVM, its label can be predicted
according to the following decision function:

f ðxÞ ¼ sgn
�Xl

i ¼ 1

aiyiKðxi,xÞþb
�

ð6Þ

where b is a biased value.
2.2. Generalization error bounds of SVM

In the numerical model selection methods, the tuning of
parameters is usually done by minimizing an estimate of a
generalization error such as the leave-one-out (LOO) error or the
k-fold cross-validation error. In general, LOO procedure gives an
almost unbiased estimate of the expected generalization error of a
learning method [20]. However, it suffers from the disadvantage
of its high computational cost [20]. In LOO procedure, one
instance is left out in turn for testing, and the training and testing
will be repeated l times. Since a non-support vector can be
correctly classified by the remaining training samples when it is
omitted (i.e. non-support vector xi does not change the decision
function of [6] for its ai¼0), a coarse estimate of the LOO

generalization error rate can be approximated as follows:

LOO Errr
1

l
nSV ð7Þ

where nSV is the number of support vectors (SVs) and l is the
number of training vectors [2]. This bound, although simple in
computation, is too loose to the real LOO generalization errors and
cannot be directly applied in SVM model selection. Some tighter
bounds have been proposed by researchers in recent years. For the
hard margin SVM with no bias b, Vapnik proposed that the LOO

error is bounded by the following equation [1]:

LOO Errr
D2

lr2
¼

R2:w:2

l
ð8Þ

where r¼ 2=:w: is the margin between the two decision
hyperplanes and D¼2R is the diameter of the smallest ball
containing all training samples. The hard margin SVM is defined
as follows:

min
1

2
:w:2

s:t: yiðwFðxiÞ�bÞZ1, i¼ 1,:::,l
ð9Þ

where R2 is the objective value of the following one-class SVM
optimization problem:

max
P

i

biKðxi,xjÞ�
P
i,j

bibjKðxi,xjÞ

s:t:
biZ0,i¼ 1,:::,l

eTb¼ 1

ð10Þ

By using the span idea, Vapnik and Chapelle further extended
the bound (8) to the general separable problems where the bias b

is given [21]. For separable case (hard margin SVM without
training errors) with bias, they proved that the LOO error rate on
training data is bounded by:

LOO Errr
1

l

SD

r ¼
SD:w:2

4l
ð11Þ

where S is the span of all support vectors (see details about S in
[21]). From the lemma 2 in [21], we have SrDsvrD, where Dsv is
the diameter of the smallest sphere containing the support
vectors of the first category (those with 0oaioC). Note that it
is very difficult to calculate S. Then for hard margin SVM, we can
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relax (11) and obtain a new LOO bound, shown as follows:

LOO Errr
D2:w:2

l
¼

R2:w:2

l
ð12Þ

Note that L2-SVM can be reduced to a hard margin classifier
simply by replacing w, the ith sample FðxiÞ and the kernel function

K(xi,xj) with ~w ¼
w

x
ffiffiffi
C
p

� �
, FðxiÞ ¼

FðxiÞ

1ffiffiffi
C
p

yiei

0
B@

1
CA and

~K ðxi,xjÞ ¼ Kðxi,xjÞþ
dij

C

� �
, where ei is the m-dimensional vector with

all zeros except that the ith component is equal to one, dij¼1 if i¼ j

and dij¼0 otherwise. Then the radius-margin LOO error bound of
(12) for hard margin SVM can be extended to the non-separable L2-
SVM. That is, for L2-SVM, the following bound holds [12]

LOO Errr
~R

2
: ~w:2

l
ð13Þ

where ~R
2

can be obtained by solving an alternative optimi-
zation problem of (10) by replacing the term K(xi,xj) with

~K ðxi,xjÞ ¼ Kðxi,xjÞþ
dij

C

� �
. Obviously, we can see that bound (8) and

bound (13) are very similar to each other. Bound (13) has been
proved to be very effective for choosing the parameters for L2-SVM
[11,12] but not so good for L1-SVM [22]. For L1-SVM, recently
several LOO bounds have been proposed. Based on the span idea,
Chuang et al. proposed a differentiable LOO error bound [6], referred
as the modified radius-margin bound:

LOO Errr
1

l
R2þ

D
C

� �
ð:w:2

þ2C
Xl

i ¼ 1

xiÞ

" #
ð14Þ

where D is a positive constant close to 1. The differentiability and
the usefulness of this bound were discussed in [13]. This bound
gives a better approximation to the LOO error rate of L1-SVM than
other existing bounds but very sensitive to the initial point [13]. If a
right starting point is given, from Chuang’s study, bound (14) can be
adopted to find near optimal parameters for L1-SVM. But if the
starting point is inappropriate, although a local optimum to the
bound can be identified, the generalization ability of SVM cannot be
guaranteed [13]. Therefore, the selection of the starting point
becomes very important. Unfortunately, it is still an open problem
to find a tight differentiable LOO error bound for L1-SVM.

2.3. BFGS method for SVM parameter tuning

In SVM model selection, we need to find an optimum (global or
local optimum) regarding the generalization bounds. BFGS
method is the commonly used method [11–14,22] and the RBF
kernel is the mostly used kernel for its many good properties and
simplicity in computation. If RBF kernel is used, there are only two
parameters, C and s2, need to be tuned. As suggested by Chapelle
et al. [11], a variable transformation is often adopted in parameter
tuning. That is, the optimization is done in a logarithmic space
(ln C, lns2) rather than directly searching in the (C, s2) space, and
(0, 0) is often adopted as the starting point. The experiments of
Keerthi et al. shows the usefulness of the LOO bound criteria and
the associated implementations [13,14]. However, considering
that there is no guarantee of the convexity of the LOO bounds, the
BFGS based parameter tuning methods may collapse if an
inappropriate starting point is chosen. Simply, this problem can
be addressed by a grid search strategy. That is to say, we can
choose a series of starting points in the parameter space and then
implement BFGS method from each starting point. Obviously, the
computation cost of this strategy will increase exponentially as
the number of parameters increases.
3. CLPSO–BFGS for tuning SVM parameters

As discussed previously, one drawback of the gradient-based
optimization methods is their sensitivity to the starting point
when dealing with non-convex problems and thus only can
ensure to converge to a local optimum. Considering that there is
no guarantee of the convexity of the LOO bounds, if an
inappropriate initial point is adopted, the gradient-based methods
may converge to a local optimum, which cannot give a right
approximation to the good parameters. In other words, the
numerical methods may occupy high computation efficiency but
lack of stabilities. Therefore, it is valuable to use some global
optimization methods to find the global (or near global) optimum.
In addition, if there are multiple local solutions to the LOO bounds,
it is also valuable to identify these multiple optima to provide
more choices for the final parameter selection. However, finding
multiple optima of a function is much more challenging and is
practically impossible by using deterministic optimization meth-
ods so far. Recently, the stochastic global optimization techniques,
such as GA, PSO and SA have been adopted to tackle with the non-
convex problems. Among them, the PSO is a relatively new
technique and has gained rapid popularity in many communities.

PSO is first proposed by Kennedy et al by modeling the social
behaviors of birds flocking [23,24]. As a population based method,
PSO has considered a lot about the cooperation and competition
among particles. but little about the particles’ individual search
ability. In the last several years, many improved variants have
been proposed. Among these new variants, the comprehensive
learning particle swarm optimizer (CLPSO) showed state-of-art
global search ability on many complex problems [19]. Different
from the standard PSO, the CLPSO uses all other particles’
historical best information to update a particle’s velocity and
thus explores a larger search space than other PSO optimizers. The
basic evolution mechanism of a single particle in CLPSO is
described as follows:

Vid ¼w Vidþc1 r1ðp
fi
id�xidÞ ð15Þ

xid ¼ xidþVid ð16Þ

where Vid and xid represents the velocity and position of particle i

in d dimension, respectively, w is the inertia weight, c1 is the
accelerate constant, r1 is a random number in ranges of [0, 1], and
fi defines which particles’ pbest the particle i should follow. pfi

id can
be the corresponding dimension of any particle’s pbest including
its own in d dimension. Although CLPSO has greatly improved the
global search ability, it still cannot satisfactorily solve the two
bottlenecks simultaneously, namely the premature convergence
and the slow convergence rate [25,26]. Another drawback of
CLPSO as well as most PSOs is that it is difficult for them to find
multiple optima of the multimodal problems, due to an intrinsic
restriction that all particles must converge to only one point at the
final step [27]. In our research, we address these problems by
supposing that the global and local searches in PSO can be treated
separately. The basic idea is, once a particle enters an optimality
region, it will quickly reach the local optimum (candidate of the
global optimum). In this sense, the only role of PSO is to guide the
particles to find the optimality region while the local search is
implemented through numerical optimization methods, such as
BFGS method. Because the parameter space in SVM is usually a
box-constrained space, a modified box-constrained BFGS method
is dynamically interleaved into the main iterations of PSO
algorithms (named as the context PSO) to implement the local
search process. Since the local search of PSO is performed by BFGS
method, the local convergence rate of the context PSO is no longer
so important while better global search ability is preferred. Taking
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all things into consideration, the CLPSO is adopted as the context
PSO in our research for its good global search ability [19].

Note that the local search is only effective when at least one of
the particles enters the optimality region that contains the global
optimum. Hence in this paper, we define a local diversity index
(LDI) to indicate whether or not the population enters into an
optimality region in a high probability. Suppose x0 is the particle
with the best fitness value, x01 and x02 are the two nearest
particles to x0, LDI is measured by L(S) as follows:

LðSÞ ¼

P2
i ¼ 1

:xoi�xo:

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPDim

k ¼ 1

ðubk�lbkÞ
2

s ð17Þ

where S denotes the population, ubk and lbk, respectively, denote
the upper and lower bounds, Dim is the dimensionality of the
problem. Obviously, L(S)r1 holds. We suppose that the popula-
tion is in an optimality region with high probability if L(S) is
smaller than a predefined value L0 and the local search will be
performed using the particle with the best fitness value as the
initial solution.

The schematic of the proposed method is shown in Fig. 1. Here,
a particle Pi is a row vector constructed by the parameter C and
the kernel width parameter s2. The modified BFGS method is
interleaved into the main iterations of CLPSO algorithm and will
be started when LoL0 is satisfied. The CLPSO iterations of the
proposed method will be stopped if a maximum number mFvals of
fitness evaluations are reached. Consider that the condition
L(S)oL0 may not satisfy in the main iterations of CLPSO, the
local search will be performed after all PSO iterations if no local
search has ever been performed. The whole optimization process
can be also terminated after one local search is performed. In this
case, only one local solution will be determined. Finally, once a
particle is chosen to perform the local search, it will be randomly
repulsed to an arbitrary location for a new global search.
Therefore, the particles in the hybrid strategy will never gather
to a single point and the premature convergence can be avoided.

For L2-SVM, bound (13) is tight enough to approximate the
LOO errors and good enough for finding the optimal parameters.
Step 1: Initialize the population. 

Stochastically assign T
1[ ,..., ]psS P P= , velociti

step index 0k = .

Step 2: Evaluate the fitness of all particles. 

If ( )L S  is greater than the predefined val

particles and go to step 4.  

Step 3: Do local search. 

Choose the particle with the best fitness value
search using BFGS method. For those particle
fitness values.  

Step 4: Update the status of the particles. 

Update the bestp  and gp . Update the par

dynamic equations of CLPSO. Set 1k k= + .

Step 5: Check termination conditions. 

If the number of the fitness evaluations larger 
2. Here, mFvals  is the predefined maximum 

Step 6: Final parameter selection. 

If no local search is performed in the iterations

the best parameters for SVM and train an optim

Fig. 1. Schematic of the CLPSO–BF
Therefore, we directly use this bound for the objective function of
the CLPSO algorithm for L2-SVM. However, for L1-SVM, the
looseness of the modified LOO error bound (14) may cause bias to
the true generalization ability of L1-SVM. In order to find the right
optimality region with high generalization ability, we use an
alternative metric, named as the sum of the error rate (SER), as the
fitness function to guide the particles to find the optimality region
instead of directly using the LOO error bound. As (7) suggested,
the number of support vectors can be a rough bound to the LOO

errors. Then in the SER metric, we consider both values of the
modified radius-margin bound (14) and the number of support
vectors. Considering that the LOO error bound value may be larger
than 1, we scale it by tan h function and the sum of the error rate
can be simply defined as follows:

SER¼ tan hðf Þþtan h
nSV

l

� �
ð18Þ

where nSV represents the corresponding number of SVs and l

stands for the number of training samples. SER makes a balance
between the bound value and the number of SVs and can provide
a better guidance to the particles to find the optimality region. An
optimal SVM classifier will be trained using the obtained
parameters and then adopted to predict the testing dataset. As
mentioned previously, the hybrid method can find multiple local
optima for the objective function. When each local search is
completed, a local solution will be stored. Considering that the
LOO errors are also bounded by the number of support vectors, in
the BFGS course, the parameter vector with the minimum number
of support vectors is also recorded.
4. Experimental results and discussions

4.1. Parameter settings

LIBSVM is to implement the SVMs [28]. Parameter settings of
the hybrid method are listed in Table 1. In the experiments, the
swarm size ps is set to 5. e denotes the termination tolerances of
BFGS method discussed in Section 3 and L0 is the predefined value
es T
1[ ,..., ]psV V V= , solution set T φ= , and 

ue 0L , directly evaluate the fitness of all 

 as the starting point and implement the local 
s without local search, directly calculate their 

ticles’ velocities and locations through the 

than mFvals , go to step 6. Or else go to step 
number of fitness evaluations.  

 of CLPSO, do local search with gp . Choose 

al classifier using the selected parameters. 

GS for SVM parameter tuning.
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Table 1
Parameter settings for CLPSO–BFGS method.

e ps L0 mFvals

1.00e�4 5 0.05 150

Table 2
General information of the 13 datasets.

# Training data # Test data # Attributes

Thyroid 140 75 5

Titanic 150 2051 3

Heart 170 100 13

Cancer 200 77 9

Banana 400 900 2

Ringnorm 400 7000 20

Twonorm 400 7000 20

Waveform 400 4600 21

Diabetis 468 300 8

Solar 666 400 9

German 700 300 20

Splice 1000 2175 60

Image 1300 1010 18
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of L(S). The maximum number of fitness evaluations mFvals is set
to 150. Other parameters of CLPSO are kept default in [19]. Among
the newly introduced parameters, L0 plays an important role for
the performance of the proposed method. We suppose that L(S)
should be smaller than 0.1, which can ensure an enough evolution
of the population. On the other hand, if L0 is too small and
L(S)oL0 cannot reach, the local search will be started after all the
PSO iterations and only one local optimum can be identified in
this case.
4.2. Derivative calculation of the LOO bounds

In BFGS method, the gradients of the LOO bounds should be
calculated. Here, only the final results are presented. The details of
derivative calculation of these two bounds can be seen in [12,13].
Denote bound (14) for L1-SVM and bound (13) for L2-SVM as f1

and f2, respectively, the derivatives can be calculated as follows:

@f1

@C
¼

1

l
2 R2þ

D
C

� �X
xi�2obj

D
C2

� �
ð19Þ

@f1

@s2
¼�

1

l
R2þ

D
C

� �X
i,j

aiajyiyj
@K

@s2
þ2obj

X
i,j

bibj

@K

@s2

#2
4 ð20Þ

@f2

@C
¼

1

l

Pl

i ¼ 1

a2
i

C2
R2�: ~w:2

P
i

bið1�biÞ

C2

#2
6664 ð21Þ

@f2

@s2
¼�

1

l
R2
X

i,j

aiajyiyj
@K

@s2
þ: ~w:2X

i,j

bibj

@K

@s2

#2
4 ð22Þ

@K

@s2
¼
@Kðxi,xjÞ

@s2
¼ Kðxi,xjÞ

:xi�xj:
2

2s4
ð23Þ

where obj in (19) and (20) denote the objective value of problem
(1).
4.3. Benchmark datasets

Thirteen benchmark datasets were adopted to illustrate the
performance of the proposed method [29]. These benchmark have
been widely used to verify variant classifiers including RBF neural
networks, Kernel Fisher Discriminant (KFD), and variants of
Adaboost based on RBF neural networks [30,31]. General
information of these datasets is listed in Table 2. Organization
of the experiments is as follows: firstly, 4 of the 13 datasets,
Splice, Image, Banana and Waveform, were chosen to show the
performance of the proposed method as case study. Then, the
performance of the proposed method was compared with GA, SA
and CLPSO on the above four datasets. Finally, the optimal SVM
classifiers obtained by the proposed method were also compared
with other optimized classifiers reported in literature [30] on the
13 benchmark datasets.
4.4. Experimental results

Combined with BFGS method, the hybrid method can find
multiple local optima for the LOO bounds. In the first experiment,
4 benchmark datasets, Splice, Image, Banana and Waveform, were
adopted to do case studies. Here, only the top five parameter pairs
with the minimum test errors were recorded. The LOO error bound
values f, the number of SVs and the SER values were also recorded.
As suggested by Chapelle et al. [11], we also did the parameter
settings in the logarithmic space (ln C and lns2). In our experi-
ments, the search scope is set to [�10,10]� [�10,10]. Table 3 and 4
respectively, shows the results on the four benchmark datasets
using bound (14) for L1-SVM and bound (13) for L2-SVM. The last
rows of each dataset in Table 3 and 4 are the results obtained by
BFGS method from initial point (0, 0). We scaled the attribute values
to [�1, 1] for each dataset, as suggested by [10]. Here, for L1-SVM,
only the top five parameter pairs with the least SER values were
recorded while for L2-SVM, the five parameter pairs with the least
LOO bound values were recorded.

From Table 3, the minimum error rate on Splice dataset is
0.0961 at point (6.157, 2.468) and the parameter pair with the
least SER value also produces competitive results. Note that the
error rate obtained by BFGS method from point (0, 0) is 0.3747,
which implies that BFGS method may fail to find the optimal (or
near optimal) parameters for L1-SVM from an inappropriate
initial point. For Image dataset, the minimum error rate is 0.0218
with the least SER value. As to Banana dataset, the best result is
obtained with least bound value and the parameter pair with the
least SER value can also produce competitive results. In contrast,
BFGS method from (0, 0) fails to find the near optimal parameters
with error rate 0.5594 on the testing dataset. Without data
scaling, as reported in [13], bound (14) shows competitive results
on the above four datasets from initial solution (0, 0) compared
with L2-SVM. However, if we scale the data to [�1, 1], a common
data preprocessing step in data classification, bound (14) does not
show the same stable performance from (0, 0). Therefore, the
gradient method from a single starting point may be feasible and
efficient for some problems but not stable, making it unsafe to
use.

Table 4 presents the results obtained by CLPSO–BFGS using
bound (13) for L2-SVM. On all four datasets, the parameters with
the least LOO bound values can provide competitive test error
rates on the test datasets. Generally speaking, bound (13) for L2-
SVM is much tighter than bound (14) for L1-SVM. From Table 4,
there are also multiple optima for bound (13). Taking Splice
dataset for example, there are three different parameter pairs
with the same LOO bound values. However, we prefer to choose
the parameter pair with the least number of SVs as the final
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Table 4
Results of L2-SVM on four datasets (%).

Datasets ln C lns2 f nSV SER Error for L2-SVM

Splice

CLPSO–BFGS 5.634 2.248 0.6011 871 1.2397 0.1016

0.802 2.584 0.6117 854 1.2314 0.0993
4.993 2.269 0.6011 863 1.2356 0.1011

4.993 2.253 0.6011 869 1.2387 0.1016

3.724 2.283 0.6013 862 1.2353 0.1007

BFGS 5.717 3.070 0.6011 868 1.2382 0.1016

Image

CLPSO–BFGS 0.152 �1.753 0.3136 858 0.8821 0.0238

0.097 �1.681 0.3135 853 0.8794 0.0238

0.394 �1.866 0.3147 829 0.8681 0.0208
0.272 �1.686 0.3142 819 0.8623 0.0228

0.286 �1.677 0.3143 813 0.8592 0.0218

BFGS 0.155 �1.731 0.3135 850 0.8779 0.0238

Banana

CLPSO–BFGS �0.917 �3.668 0.4546 325 1.0966 0.1137
�0.841 �3.778 0.4546 322 1.0925 0.1141

�0.863 �3.759 0.4545 323 1.0938 0.1145

�1.106 �3.669 0.4567 338 1.1159 0.1141

�0.850 �3.685 0.4547 321 1.0912 0.1137

BFGS �1.042 �3.763 0.4556 335 1.1110 0.1149

Waveform

CLPSO–BFGS �0.235 �0.139 0.3959 231 0.8973 0.1007

�0.461 �0.048 0.3946 234 0.9016 0.0983
�0.689 0.209 0.3966 229 0.9691 0.0985

�0.553 �0.032 0.3948 238 0.9898 0.0983
�0.467 �0.141 0.3951 241 0.9146 0.0993

BFGS �0.532 2.404 0.3995 228 0.8949 0.1015

Table 5
Number of function evaluations on four datasets (only for L2-SVM).

Method Splice Image Banana Waveform

BFGS 139 25 31 29

CLPSO–BFGS 150 150 150 150

Table 3
Results of L1-SVM (%).

Datasets ln C lns2 f nSV SER Err

Splice

CLPSO–BFGS 6.162 2.233 0.6026 860 1.2352 0.1021

6.157 2.468 0.6196 783 1.2053 0.0961
5.882 2.216 0.6035 866 1.2389 0.1011

5.874 2.597 0.6479 740 1.1994 0.0966

– – – – – –

BFGS 10.000 0.824 0.9501 979 1.4925 0.3747

Image

CLPSO–BFGS 9.313 �2.957 0.3950 779 0.9122 0.0337

0.355 �0.854 0.6474 348 0.8314 0.0337

8.530 �2.954 0.3950 782 0.9138 0.0337

0.666 �1.702 0.5314 415 0.7953 0.0218
9.236 �2.939 0.3950 784 0.9149 0.0337

BFGS 6.489 �2.963 0.3955 781 0.9137 0.0337

Banana

CLPSO–BFGS �0.644 �3.906 0.8479 166 1.0827 0.1133

�0.433 �3.419 0.8763 148 1.0586 0.1108

�0.818 �3.851 0.8447 167 1.0831 0.1118

�0.605 �3.587 0.8543 158 1.0690 0.1100
�0.296 �3.437 0.8925 145 1.0600 0.1114

BFGS �4.968 �0.043 1.8320 366 1.6735 0.5594

Waveform

CLPSO–BFGS 6.337 �0.587 0.5045 183 0.8937 0.1085
6.342 �1.006 0.4439 261 0.9902 0.1126

7.727 �0.551 0.5151 175 0.8855 0.1087

7.728 �1.000 0.4433 266 0.9981 0.1120

– – – – – –

BFGS 4.708 �1.228 0.4657 311 1.0860 0.1148
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optimal parameters. From Table 4, we can see that with SER

criterion, except for Image dataset, the CLPSO–BFGS can produce
better results than BFGS method.

To show the complexity of the proposed method, we make
a comparison between BFGS and CLPSO–BFGS on L2-SVM by
counting the number of their fitness function evaluations, as
shown in Table 5. In general, CLPSO–BFGS needs more
computations than BFGS method (two or more times than BFGS
method). However, if a wrong starting point is chosen, BFGS
will also cost a lot of calculations to achieve to the local optimum.
For example, as to Splice dataset, BFGS needs 139 fitness
evaluations to find the local optimum from initial solution
(0, 0), while CLPSO–BFGS can search for several local solutions
within 150 fitness evaluations, namely 300 SVM trainings
including the training of one-class SVM. Hence, CLPSO–BFGS
holds a relatively high efficiency per each candidate optimal
parameter in computation. The proposed method also needs
fewer computations than grid search method. Specifically, if
5-cross-validation is adopted, then only 60 candidate para-
meter pairs can be tested using grid search method within
300 SVM trainings. Apparently, 60 candidate parameter pairs
are usually not enough for real applications. For example, if
we uniformly sample 20�20 points from the search space
[�10,10]� [�10,10], it should need 2000 SVM trainings in total.
What’s more, the number of SVM trainings will increase
exponentially as the number of parameters increases. However,
the proposed method can be very effective when dealing with
multiple parameters because of the introduction of local search. In
addition, if only one parameter pair is needed, the optimization
process can be terminated once a local search is finished, which can
save a lot of computations but less stable. In conclusion, on the time
complexities, the proposed method is a little higher than the pure
gradient method but much less than the grid search method.
As mentioned in the introduction section, the stochastic
optimization techniques can be directly adopted to optimize the
LOO bounds. In the following experiment, the results obtained by
CLPSO–BFGS were compared with those obtained by GA, PSO and
SA methods. Here, only L2-SVM was studied. All experiments
were run 30 times. The mean values and standard deviation of the
error rates on different datasets are presented. In this paper,
CLPSO was used to implement the PSO algorithm [32]. The
adaptive simulated annealing (ASA) algorithm was adopted to
implement the SA algorithm [33], and the GA toolbox developed
Houck et al. was employed to implement the GA algorithm [34].
For convenience of comparison, all the algorithms mentioned
above were completed when a total of 150 fitness evaluations
were reached. The number of particles in CLPSO and the
population size of GA are both set to 5. Other parameters of the
aforementioned algorithms were kept default. The results were
reported in Table 6. We can conclude from this table that CLPSO–
BFGS method can achieve the best performance among the listed
algorithms. The underlying reason is that, by adopting the BFGS
method as the local search, the CLPSO–BFGS can achieve more
accurate results than the traditional stochastic methods. What’s
more, the CLPSO–BFGS can find multiple local optima to the
bounds, which can provide better results than a single local
optimum.
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Table 6
Error rates for L2-SVM (%).

CLPSO GA ASA CLPSO–BFGS

Splice 10.1670.00 10.1670.00 10.1670.00 9.9870.14
Image 5.4476.19 9.4170.00 3.3470.00 2.4170.35
Banana 17.8772.12 16.1270.00 11.6170.61 11.2170.25
Waveform 11.1670.00 11.4670.00 11.1970.00 9.8470.06
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To further verify the proposed method, in the second
experiment, the results obtained by the proposed method were
compared with those published in literature [31] on 13 bench-
mark datasets that have been preprocessed by Rätsch. In Rätsch’s
preprocessing, the benchmark datasets were regenerated into 100
partitions (20 for image and splice datasets) with testing and
training set (about 60:40%) [3,29]. An optimal classifier was
obtained using the proposed method and tested on each of the
datasets. The average testing error rates and the standard
deviations were recorded, as shown in Table 6. In order to
compare the algorithms, the best errors for every classification
problem were bolded. The parameter n in n-SVM is estimated by
Bayes risk p and the kernel parameter is estimated by running
n-fold cross-validation [30].

From Table 7, we can see that, the CLPSO–BFGS shows
improved performance compared with single BFGS method on
two types of SVM. At first, as also mentioned in Table 3, BFGS
method using bound (14) on Banana and Splice dataset may fail to
find the optimal parameters for L1-SVM from starting point (0, 0).
Maybe we can improve the performance of the BFGS by providing
a suitable starting point, about which, however, we usually have
little knowledge in advance, making it hard to implement.
Secondly, generally speaking, bound (13) for L2-SVM shows
better performance than bound (14) for L1-SVM, as shown in
Table 7, which lies in that bound (13) is much tighter than bound
(14) on approximating the LOO errors. Although BFGS method
with bound (13) for L2-SVM shows good enough results on most
of the benchmark dataset, we still argue its stability. For example,
for Banana dataset, the BFGS method obtains an error rate of
41.16711.28 (%) from the starting point (0, 0). It indicates that
bound (13) may be also not stable if an inappropriate initial
solution is provided. By contrast, CLPSO–BFGS can achieve an
error rate of 10.4470.46 (%), the best results among the listed
optimized classifiers. Again, L2-SVM with parameters selected by
CLPSO–BFGS also produces the best results on Thyroid and
Waveform datasets. Finally, one can conclude from Table 7 that
there is no classifier that can outperforms others on every dataset
while the proposed method shows competitive performance
compared with other optimized classifiers.
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5. Conclusions

The task of tuning SVM parameters is important for the SVM
applications and can be fulfilled by minimizing a generalization
error bound by using the gradient optimization methods, which
are known for their fast local convergence speed but very
sensitive to the initial point. In view of the non-convexity of the
existing generalization bounds, a hybrid CLPSO–BFGS algorithm is
proposed to perform SVM model selection based on two existing
generalization error bounds. The CLPSO–BFGS maintains both the
global search ability of CLPSO algorithm and the fast local
convergence rate. The proposed strategy can also find multiple
solutions to the non-convex LOO error bound, which provides
more choices for the final parameter selection and makes the
model selection more stable and reliable. The experimental



ARTICLE IN PRESS

S. Li, M. Tan / Neurocomputing 73 (2010) 2089–20962096
results on benchmark datasets demonstrate that the proposed
strategy can obtain competitive results compared with other
optimized classifiers, and more stable performance than the
gradient methods and less computationally expensive than the
grid search method.
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