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Variable-Frequency Phase Unwrapping for
High-Speed 3-D Shape Measurement
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Abstract— Phase unwrapping plays a critical role in dig-
ital fringe projection (DFP) 3-D measurements. The phase
unwrapping methods based on geometric constraints require no
additional patterns, achieving superior efficiency and accuracy.
However, our study reveals that existing methods suffer from
a depth range imbalance (DRI) problem, leading to unwrap-
ping failure and measurement error. This article presents a
variable-frequency fringe pattern to address this problem. Unlike
artificially defined constant-frequency fringes, we quantify the
measurement depth range and theoretically determine the opti-
mal fringe frequency according to the system parameters. Based
on this, we propose a variable-frequency phase unwrapping
(VFPU) method for high-speed 3-D shape measurement. The
proposed method overcomes the DRI problem and maximizes the
measurement accuracy and robustness. Extensive experimental
results demonstrate the superiority of the proposed method in
high-speed 3-D shape measurements.

Index Terms— 3-D shape measurement, digital fringe projec-
tion (DFP), geometric constraint, phase unwrapping, variable
frequency.

I. INTRODUCTION

THE digital fringe projection (DFP) 3-D measurement
technologies have been widely applied in industrial pro-

duction and scientific research fields for the advantages of high
precision, compact structure, and low cost [1], [2], [3]. DFP
systems actively project structured fringe patterns and extract
the phase information to recover the 3-D shape. However,
the phase analysis algorithm can only provide the wrapped
phase between −π and π with 2π discontinuities, which
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affects unique phase matching [4], [5]. Therefore, the phase
unwrapping technique that recovers the absolute phase has
been one of the core procedures and gained a lot of research
efforts in recent years [6], [7], [8], [9].

Classical phase unwrapping approaches can be mainly
divided into two categories: the spatial phase unwrapping and
the temporal phase unwrapping [6]. The spatial technologies
assume the phase to be continuous, and recover the abso-
lute phase by analyzing the adjacent phase values, including
Goldstein’s method [10], reliability-guided method [11], and
Flynn’s method [12]. These methods require no extra patterns
and achieve high efficiency; however, it is challenging to
handle complex surfaces with height jumps or occlusions. The
temporal methods project additional patterns that can provide
fringe order information [13], including the multifrequency
phase-shifting method [14] and the Gray-code [15] method.
These methods can be applied to complex surfaces and have
higher robustness. However, acquiring extra fringe patterns
severely reduces measurement efficiency [16]. To avoid extra
fringe projections, researchers proposed to embed fringe order
information into fringes [17], [18], [19], employ multiple
cameras [20], or combine both [21], but such methods may
degrade the phase quality or increase the hardware costs.
In recent years, learning-based phase unwrapping methods
have demonstrated promising performance [22], [23], [24].
However, the reliance on large amounts of training data
limits their widespread application. Furthermore, incorporating
physical priors to improve measurement stability and enhance
interpretability remains to be further explored [25].

Different from these approaches, An et al. [26] proposed
to employ the geometric constraints for phase unwrapping.
By generating a virtual reference phase plane, the absolute
phase can be recovered pixel-by-pixel. However, this method
can only handle a phase range of 2π , which means that the
phase change caused by the object depth should not exceed
2π with regard to the reference plane. Though decreasing the
fringe frequency increases the depth range, the measurement
accuracy would be affected [14], [27]. To overcome the depth
range limitation, some studies focus on estimating the optimal
reference planes. Jiang et al. [27] use prior knowledge to
estimate multiple reference planes, and Dai et al. [28] use
a known object to provide cues. However, it is challenging for
these methods to flexibly measure unknown objects. Instead
of artificially generating the reference plane, Wang et al.
[29] adaptively evaluate the optimal reference plane accord-
ing to the wrapped phase, but the measurement range is
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still limited. On the other hand, some studies combine the
geometric constraint with existing methods to increase the
measurement range. Yu and Da [30] introduce the photometric
information, but this method has specific requirements for the
object surface’s reflectivity. Tao et al. [31] propose to use
multiple-camera constraints but increase the system complex-
ity. The depth range can also be increased by combining with
temporal methods, such as the two-frequency phase-shifting
method [32], the Gray-code method [33], and the phase-coding
method [34], however, sacrificing the measurement efficiency.

These related works based on geometric constraints mainly
focus on expanding the measurement range and have made
great progress. Estimating the depth range is critical for prac-
tical measurement since out-of-range causes incorrect results.
However, to the best of our knowledge, the quantitatively
calculating framework has not been established yet. Most
existing methods treat the capture and projection lights as
ideal parallel [26], [27], [35], ignoring the optical properties
in which the light rays diverge from the optical center, that is,
the pin-hole imaging model [36]. Moreover, existing analyses
employ 1-D trigonometric derivation, unable to determine the
measurement range in 3-D space. To overcome these limita-
tions, we propose an imaging model-based calculating method.
Specifically, we calculate the difference in 3-D coordinates
corresponding to projector pixel pairs that have a 2π phase
shift in the projector phase but are imaged in the same
camera pixel. Therefore the depth range in 3-D space can be
quantitatively determined.

Different from existing studies, our proposed calculating
method reveals that the measurement depth range is imbal-
anced, that is, the depth range in some regions is much
narrower than the others. This phenomenon is referred to
as the depth range imbalance (DRI) problem in this article.
The DRI problem causes phase unwrapping errors and mea-
surement failures in the narrow-depth-range regions, seriously
affecting the application in real-world measurement scenarios.
For the traditional constant-frequency fringes, though reducing
the fringe frequency can increase the depth range, it sac-
rifices the overall accuracy. Obviously, there exist optimal
fringe frequencies that satisfy the depth range requirements
while maximizing the measurement accuracy. To determine
the optimal frequencies, we propose to optimize the fringe
frequency according to the system’s geometric parameters.
Unlike traditional constant frequency, the frequency of the
optimized fringes varies throughout the encoding coordi-
nates. Based on this, we propose the variable-frequency
phase unwrapping (VFPU) method for high-speed 3-D shape
measurement. The proposed VFPU method employs the
variable-frequency fringes and geometric constraints to deter-
mine the absolute phase, requiring no additional patterns
and achieving high measurement efficiency. Furthermore, the
proposed method addresses the DRI problem and achieves
higher accuracy. Our main contributions are summarized as
follows.

1) We propose an imaging model-based method to calculate
the measurement range of the geometric constraint-based
phase unwrapping methods and reveal the DRI problem
that causes measurement failure.

2) To address the DRI problem, we design a
variable-frequency fringe pattern that adaptively
determines the optimal frequencies through the system
parameters and maximizes the measurement accuracy.

3) The proposed method requires no additional patterns
and achieves high accuracy, high efficiency, and high
robustness in complex shape measurement.

The remainder of this article is as follows. Section II
discusses the principle. Section III discusses the simulation
results. Section IV provides experimental results and discus-
sion, and Section V concludes this work.

II. PRINCIPLE

A. Phase-Shifting Algorithm

The basic principle of phase-shifting algorithms is to
actively project a sequence of sinusoidal fringe patterns and
establish correspondence through phase information. Math-
ematically, the fringe pattern of an N -step phase-shifting
algorithm with equal phase shift can be described as follows:

I p
n

(
u p, v p)

= I ′
+ I ′′ cos

[
8

(
u p, v p)

+ 2πn/N
]

(1)

where n = 0, 1, . . . , N −1 and N is no less than 3. I p
n (u p, v p)

represents the intensity of projector pixel (u p, v p) in the n-
th pattern. I ′ and I ′′ denote the intensity bias and intensity
modulation, respectively, and 8(u, v) is the initial encoding
phase of pixel (u p, v p). If fringes along the U p axis are used,
8(u p, v p) can be expressed as

8
(
u p, v p)

= 2πu p/T (2)

where T is the fringe period (i.e., the number of pixels per
fringe), and the fringe frequency is defined as f = 1/T .
The fringe patterns are then projected and distorted by the
measured surface, and the distorted phase in the captured
images can be extracted by

φ
(
uc, vc)

= − arctan
∑N−1

n=0 I c
n (uc, vc) sin(2πn/N )∑N−1

n=0 I c
n (uc, vc) cos(2πn/N )

(3)

where I c
n (uc, vc) denotes the intensity of camera pixel (uc, vc)

in the nth captured image. However, limited by the arctangent
function, (3) only provides a wrapped phase ranging from
−π to π with 2π discontinuities, making it impossible to
establish unique correspondence with the projector phase
8(u p, v p). Therefore, the phase unwrapping algorithm is
required to determine the absolute phase 8(uc, vc). In essen-
tial, the phase unwrapping procedure determines the fringe
orders and adds multiples of 2π to the wrapped phase to
eliminate phase ambiguity

8
(
uc, vc)

= φ
(
uc, vc)

+ 2πk
(
uc, vc) (4)

where k(uc, vc) denotes the fringe order for pixel (vc, vc). The
unwrapped phase is then used to recover the 3-D shape of the
measured object through the imaging model, which will be
introduced as follows.

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:49:05 UTC from IEEE Xplore.  Restrictions apply. 



ZENG et al.: VARIABLE-FREQUENCY PHASE UNWRAPPING FOR HIGH-SPEED 3-D SHAPE MEASUREMENT 5031613

Fig. 1. Principle of phase unwrapping using the reference phase plane. (a) When the difference between the absolute phase 8obj and the reference phase plane
8ref does not exceed 2π , the wrapped phase φ can be unwrapped correctly. (b) Otherwise incorrect result 8̂obj with a 2π phase gap would be introduced.

B. Geometry Constraint-Based Phase Unwrapping

A typical DFP system consists of a camera and a projector,
and the imaging lenses can be described using the well-known
pin-hole model [36]. Mathematically, the measurement system
can be described as

sc[ uc vc 1
]T

= Pc[ xw yw zw 1
]T (5)

s p[ u p v p 1
]T

= Pp[ xw yw zw 1
]T (6)

where sc and s p are two scale factors, (uc, vc) and (u p, v p)

are the camera pixel and the corresponding projector pixel,
respectively, and (xw, yw, zw) denotes the 3-D world coor-
dinates. The projection matrix Pc and P p both have
3×4 elements and can be determined through the DFP system
calibration algorithm [37]. For each camera pixel (uc, vc),
(5) and (6) provide six equations with seven unknowns
(sc, s p, u p, v p, xw, yw, zw); therefore, at least one additional
constraint is required to recover the 3-D coordinates. In the
DFP system, this problem is resolved by establishing the
correspondence between the camera and projector pixels with
the same absolute phase value [1].

To obtain the absolute phase 8(uc, vc), the geometry
constraint-based phase unwrapping (GCPU) method [26] gen-
erates a virtual reference plane with known phase and then
deter mines the fringe order by calculating the phase dif-
ference. It is noteworthy that while An et al. [26] mainly
discuss using the closest plane with the minimum phase as
the reference, this article considers the furthest plane with
the maximum phase to match our real-world measurement
condition, where the measured objects are placed upon the
reference plane, between the reference plane and the camera.
Though different symbols are used, the concepts behind them
are identical. Similar conditions also have been discussed in
[35] and [38].

In general, the pre-defined reference plane is perpendicular
to the optical axis of the camera and denoted as zw

= zref.
Substituting zref into (5) and (6), all the other unknowns
(sc, s p, u p, v p, xw, yw) can be uniquely determined. Once
(u p, v p) is obtained, the absolute reference phase 8ref(uc, vc)

corresponding to zref can be calculated using (2). Apparently,
the reference phase is a function of zref, the fringe period T ,

and the projection matrices, that is,

8ref
(
uc, vc)

= f
(
zref, T, Pc, P p). (7)

The principle of phase unwrapping using the reference phase
plane is illustrated in Fig. 1(a). The blue solid line represents
the reference phase plane 8ref, while the black solid line
represents the wrapped phase φ. For pixels between O and
A, 8ref − φ < 2π , no operation is required; between A and
B, 2π < 8ref − φ < 4π , then 2π needs to be added; between
point B and C, 4π < 8ref − φ < 6π , then 4π needs to be
added. Similar operations are applied to the rest; therefore, the
full-field 2π discontinuities can be eliminated, and the absolute
phase 8obj can be obtained as the red solid line in Fig. 1(a).
The calculation process can be expressed as

k
(
uc, vc)

=

⌊
8ref(uc, vc) − φ(uc, vc)

2π

⌋
(8)

where ⌊·⌋ represents the floor operation, which returns the
largest integer less than or equal to the input. As the fringe
order is obtained, the unwrapped phase can be determined
by (4).

The GCPU method requires no additional patterns or com-
plex computation, achieving higher efficiency than traditional
approaches. However, it suffers from a measurement range
limitation problem: the object phase plane 8obj should be
within [8ref − 2π, 8ref). As a failure case, Fig. 1(b) shows
that, when the object phase exceeds 8ref, the unwrapped
result 8̂obj would be 2π less than the true phase, leading to
incorrect measurement results. The above analysis illustrates
the measurement range in terms of phase, while Fig. 2(a)
illustrates how to determine the corresponding range in terms
of depth. The black solid line and black dashed line represent
the reference and the upper-bound object planes, respectively,
and the adjacent red serrated line represents the phase distri-
bution. The blue solid line and blue dashed line represent the
projection light and the captured light, respectively, between
which the angle is θ , and the spatial span of one projected
fringe period is Ts . Point A on the object phase plane and
point C on the reference plane are imaged by the same camera
pixel, but have 2π phase shift. Through simple trigonometrical
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Fig. 2. Measurement depth range model. (a) Existing studies take the capture light and projection light as parallel, and the depth range is constant throughout.
(b) According to the pin-hole lens model, the angle and the fringe spans vary along the coordinates; therefore, the depth range is imbalanced.

Fig. 3. Measurement results of different objects. (a) Correct measurement.
(b) Incorrect measurement. (c) Correct measurement on the left side, but
incorrect when moved to the right.

derivations, the measurement depth range can be obtained as

1z = Ts/ tan θ. (9)

Increasing the fringe period would enlarge Ts and thus extend
the measurement depth range. However, this also degrades
phase quality and increases measurement error, which is
undesirable for high-accuracy measurements [27].

C. Variable-Frequency Phase Unwrapping

Existing methods often assume that light rays are parallel;
however, this assumption is not valid for typical DFP systems
equipped with pin-hole lenses. As illustrated in Fig. 2(b), since
light rays diverge from the optical centers of the camera and
projector, the angle between the capture and projection lights
varies, and the fringe spans on the object plane would also
be changed. Consequently, the object plane is not parallel to
the reference plane, resulting in an imbalanced depth range.
In the case of Fig. 2(b), the depth range on the right side is
narrower than that on the left side.

The DRI problem causes abnormal measurement failures.
Fig. 3 illustrates measurement results of objects with different
sizes. In Fig. 3(a), when the block lies entirely beneath the
object plane, the shape is recovered successfully. However,
in Fig. 3(b), despite the block’s height being less than the
maximum depth, the right half is measured incorrectly due
to phase unwrapping failure. Furthermore, in Fig. 3(c), the
small block is successfully measured when placed on the left
side, but unsuccessfully on the right, indicating that the
measured object must be carefully placed. Moreover, the issue
of DRI complicates the measurement process, as the measure-
ment depth range cannot be quantitatively estimated. These

drawbacks limit its application in practical 3-D measurement
specifically in automated scenarios.

To quantitatively evaluate the imbalanced depth range,
we develop an imaging model-based calculating method.
We adopt the DFP imaging model to determine the
upper-bound object plane, which also satisfies (5) and (6). For
each point on the object plane, there exists a corresponding
point on the reference plane, and both are imaged onto the
same pixel by the camera, but with a 2π shift in the absolute
phase as defined by the projector. As illustrated in Fig. 2(b),
the phase of point C on the reference plane is equal to that
of point B on the object plane, and is 2π greater than point
A corresponding to the same camera pixel. This relationship
can be mathematically expressed as

8obj
(
uc, vc)

= 8ref
(
uc, vc)

− 2π. (10)

If fringes along the U p direction are used, the projector pixel
corresponding to the object plane can be determined by

u p
obj = u p

ref − T (11)

where u p
ref is the projector pixel corresponding to the reference

plane, which is obtained in solving (7), and T is the fringe
period.

Apparently, u p
= u p

obj provides an additional constraint
for solving (5) and (6); therefore, all the unknowns can be
uniquely determined. Using zw

= zobj(uc, vc) to denote the
object plane, we obtain the measurement depth range by

1z
(
uc, vc)

=
∣∣zobj

(
uc, vc)

− zref
∣∣ (12)

where |·| represents the absolute value function.
Fig. 4 illustrates a 3-D view of the imbalanced measurement

depth range calculated from (12), where the blue and yellow
planes are the reference plane and the non-parallel object
plane, respectively. From Fig. 4, objects that can be accurately
measured in areas with a large depth range may exceed the
boundaries in areas with a smaller depth range, leading to mea-
surement failures. To ensure measurement performance across
the entire field of view, the measurement depth range should be
uniformly distributed. In other words, the upper-bound object
plane should be parallel to the reference plane, as shown by
the green plane in Fig. 4.
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Fig. 4. Quantitatively calculated depth range distribution.

As (10) and (11) indicate, for each camera pixel, the
measurement depth range is the depth difference between the
spatial coordinates corresponding to two corresponding pro-
jector pixels. For the conventional constant-frequency method,
these two projector pixels have a phase bias of 2π and a pixel
bias equal to the fringe period T . Therefore, increasing the
fringe period, that is, decreasing the fringe frequency, can
expand the depth range. However, a lower fringe frequency
leads to degradation in measurement accuracy [14]. Consid-
ering the imbalanced depth range, there exist optimal fringe
frequencies for each pixel that ensures a consistent depth
range while simultaneously maximizing measurement accu-
racy. To determine the optimal frequencies, we first calculate
the projector pixel corresponding to a virtual object plane that
is parallel to the reference plane. According to the previous
analysis, for the object plane at zw = zobj, the projector pixels
can be uniquely determined by solving (5) and (6). Therefore
the variable pixel bias, denoted as T (u p, v p), is a function of
zref, zobj, and the projection matrices, that is,

T
(
u p, v p)

= f
(
zref, zobj, Pc, P p). (13)

It is noteworthy that zref and zobj are both given artificially
according to the measurement requirements. Therefore, the
measurement depth range is constant and can be determined
by

1zc = zref − zobj. (14)

Given zobj, the corresponding xw and yw for each camera pixel
(uc, vc) can be determined by solving (5), which is expressed
as [

xw

yw

]
= M−1b (15)

where

M =

[
pc

31uc
− pc

11 pc
32uc

− pc
12

pc
31v

c
− pc

21 pc
32v

c
− pc

22

]
b =

[
pc

14 − pc
34uc

−
(

pc
33uc

− pc
13

)
zobj

pc
24 − pc

34v
c
−

(
pc

33v
c
− pc

23

)
zobj

]
. (16)

Here pc
i j denotes the matrix parameters of Pc in i th row

and j th column. By substituting (xw, yw, zw) into (6), the

corresponding projector pixel along the U p axis can be
determined by

u p
obj =

p p
11(x)w + p p

12 yw
+ p p

13zw
+ p p

14

p p
31xw + p p

32 yw + p p
33zw + p p

34
. (17)

Then, we obtain the projector pixel bias in the U p axis as

T
(
u p, v p)

= u p
ref − u p

obj. (18)

Notably, the phase difference between u p
ref and u p

obj is 2π ,
which can be mathematically expressed as

8
(
u p

ref

)
− 8

(
u p

obj

)
= 2π. (19)

Since the fringe frequency can be expressed as the derivative
of the fringe phase divided by 2π , the fringe phase can be
determined by finding the integral of the fringe frequency
multiplied by 2π . Assuming that the phase value at the pixel
origin is zero, the fringe phase along the U p axis satisfies

8
(
u p)

= 2π

∫ u p

0
f (u)du (20)

where f (u) denotes the fringe frequency at pixel u. Then, (19)
can be converted to

2π

∫ u p
ref

u p
obj

f
(
u p)du p

= 8
(
u p)∣∣∣∣u p

ref

u p
obj

= 2π. (21)

Considering its monotonicity and continuity, we use poly-
nomials to represent 8(u p). Since each u p

ref-u
p
obj sample

satisfies (21), the polynomial parameters can be estimated
through the popular least-square algorithm. It is noteworthy
that the obtained 8(u p) is relative phase for pixels in between
[u p

min, u p
max], where [u p

min and u p
max] are the minimum and max-

imum of all u p
ref-u

p
obj samples, respectively. Therefore, we first

calculate the derivative of 8(u p) to determine the fringe
frequency in between [u p

min, u p
max], and set constant-frequency

value for the rest of the pixels. Specifically, the entire fre-
quency along the U p direction is as follows:

f
(
u p)

=


f
(
u p

min

)
, u p < u p

min
d8(u p)

du p
, u p

min ≤ u p
≤ u p

max

f
(
u p

max

)
, u p > u p

max.

(22)

After obtaining the fringe frequency, the encoding phase can
be determined using (20). Since the phase does not increase
linearly with the coordinates, a look-up table (LUT) is estab-
lished to store the phase values to simplify calculations in the
decoding procedure. Next, the encoding fringe patterns can be
determined through (1).

The proposed VFPU method is friendly to existing DFP
systems since the conventional phase analysis methods can
still be used in the decoding process. Firstly, the wrapped
phase is determined from (3), and the reference phase plane
is generated for phase unwrapping. The major difference lies
in the pixel-matching procedure: the corresponding projector
coordinates are determined by referring to the pre-established
phase LUT, and then the 3-D shape is recovered.
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Fig. 5. Simulation results. (a) Variable projector pixel bias. (b) Fringe frequency and the corresponding phase distribution in the U p axis. (c) Variable-frequency
fringe pattern.

Fig. 6. Simulation results in the presence of noise. (a) Phase unwrapping success ratio. (b) Phase error.

III. SIMULATIONS

We conduct simulations to validate the feasibility and
robustness of the proposed method. Our simulated measure-
ment system comprises a camera and projector, both with
resolutions of 512 × 512 and focal lengths of 20 mm. The
devices are positioned at an angle of π/6 to each other, with
a reference plane established at 180 mm perpendicular to the
camera. The projection matrices for the camera and projector
are calculated using the pin-hole model [36].

According to the principle of depth range calculation, for
constant-frequency sinusoidal patterns with a period of 32 pix-
els, the maximum and minimum depth ranges are 10.3 and
7.2 mm, respectively. Therefore, we set the upper-bound object
plane at 10.3 mm. Fig. 5(a) illustrates how pixel bias in (18)
varies with projector coordinates. Fig. 5(b) depicts the fringe
frequency (in red) and the encoding phase (in blue), show-
ing the variation of fringe frequency with pixel coordinates.
Finally, Fig. 5(c) displays one of the VFPU patterns, which
demonstrates variations in the fringe spans along the U p axis,
ranging from 32 pixels on the left to 48 pixels on the right.

We assess performance under noisy conditions by com-
paring the proposed VFPU method with widely used
temporal unwrapping techniques [14], including two- and
three-frequency hierarchical methods (labeled MF-2 and MF-
3, respectively), and two- and three-wavelength heterodyne
methods (labeled MW-2 and MW-3, respectively). We gen-
erate a plane 175 mm perpendicular to the camera as the

measurement object. The ground-truth phase is determined
using simulated calibration parameters, and the captured fringe
patterns are set with an average intensity of 128 and fringe
modulation of 70, consistent with [14]. We add Gaussian-
distributed random noise to these patterns and compare the
phase error and unwrapping success rates. The results in
Fig. 6(a) indicate that the phase unwrapping success rate
for the MW-2, MW-3, and MF-2 methods declines as noise
levels increase. In contrast, the MF-3 and VFPU methods
maintain robust performance. Notably, the MF-3 method uti-
lizes 12 patterns, while the VFPU method requires only
4 patterns. As depicted in Fig. 6(b), although the MF-3 method
slightly outperforms the VFPU method in terms of phase error,
the VFPU method is significantly more efficient, using only
one-third the number of patterns. The results demonstrate the
robustness and efficiency of the proposed VFPU method.

IV. EXPERIMENTS AND DISCUSSION

A. Experiment Setup

To experimentally evaluate the proposed VFPU method,
we develop a DFP system consisting of a digital light pro-
cessing projector (Texas Instruments DLP LightCrafter 4500,
405 nm wavelength light) and a CMOS camera (FLIR BFLY-
PGE-50S5M-C). The resolutions of the projector and camera
are 912 × 1140 and 2448 × 2048, respectively, and the focal
lengths are 28 and 25 mm, respectively. This DFP system
is developed for microscopic objects and the field of view is

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:49:05 UTC from IEEE Xplore.  Restrictions apply. 



ZENG et al.: VARIABLE-FREQUENCY PHASE UNWRAPPING FOR HIGH-SPEED 3-D SHAPE MEASUREMENT 5031613

Fig. 7. Photograph of the DFP measurement system.

Fig. 8. Variable-frequency pattern design in the experiments. (a) Variable-fre-
quency phase distribution. (b) One of the variable-frequency fringe patterns.

approximately 40 × 50 mm. The photograph of the system
is shown in Fig. 7. To acquire the projection matrices for the
camera and projector, the method proposed in [37] is adopted
for calibration.

The virtual reference plane is set to 175 mm perpendicular
to the camera. For the standard sinusoidal fringe with 16 peri-
ods, the maximum depth range the geometric constraints can
handle is 9.0 mm according to (12). Therefore, we select
9.0 mm as the depth range to design the variable-frequency
fringes. The encoding phase is illustrated in Fig. 8(a) and
is stored in an LUT with 50 sample elements per pixel for
pixel matching. Fig. 8(b) shows one of the variable-frequency
fringe patterns. Unless otherwise specified, we employ four-
step phase shifting for all the methods in the following
experiments. The 32-step three-frequency hierarchical method
is implemented to obtain the ground-truth absolute phase.

B. Comparison With Traditional Methods

To evaluate the measurement precision of the system,
we select a standard plane as the measurement object.
We obtain the absolute phase through the proposed VFPU
method and calculate the 3-D point clouds of the standard
plane. We use the point clouds to fit an ideal plane and
calculate the residual error. Fig. 9 shows the full-field error

Fig. 9. Measurement error distribution on the standard plane.

TABLE I
PIXEL-MATCHING ACCURACY USING LUT

distribution, and the root mean square error (RMSE) is
0.0177 mm. We then experimentally evaluate the impact
of the number of LUT elements on measurement accuracy.
We find the pixel coordinates corresponding to the unwrapped
phase from the LUT and then calculate the pixel-matching
error relative to the ground truth. As shown in Table I,
the pixel-matching error decreases as the number of LUT
elements per pixel increases, stabilizing when it exceeds
50 elements per pixel. For comparative analysis, we also
calculated the matching error using the MF-3 method, which
performs better than the VFPU method by 0.005 pixels.
This difference can be attributed to the VFPU method’s fre-
quency modification to address the imbalanced depth ranges.
However, it is noteworthy that the VFPU method requires
only one-third the number of patterns compared to the MF-3
method.

We then compare the proposed VFPU method with widely
used phase unwrapping methods through plane measure-
ment experiments. In addition to the sinusoidal fringe-based
methods, we explore several discrete fringe-based methods,
including the phase-encoding (PC) method [39], the Gray-code
(Gray) method [15], the misaligned Gray-code (MGC) method
[40], and the generalized Tri-PU method [41]. To evaluate
the measurement performance under noisy conditions, we add
Gaussian-distributed noise with different standard deviations to
the captured fringe patterns and calculate the phase error and
unwrapping success rate. The experimental results in Fig. 10

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:49:05 UTC from IEEE Xplore.  Restrictions apply. 



5031613 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

Fig. 10. Experimental results in the presence of noise. (a) Phase unwrapping success ratio. (b) Phase error.

are consistent with the simulations. Among phase unwrapping
methods based on sinusoidal fringes, the MF-3 method is
more stable than others, while the heterodyne methods are
observed to be more sensitive to noise due to higher noise
amplification [14]. In methods based on discrete fringes, the
phase-coding and Gray-code methods are affected by jump
errors, leading to a decrease in the unwrapping success rate
as noise increases. To address the mismatching problem, the
misaligned Gray-code method pre-shifts the Gray-code fringes
by half a period before projection, and the generalized Tri-PU
method divides each period of fringe order into three parts,
performing phase unwrapping individually. These adaptations
effectively address the jump errors problem. Regarding the
proposed VFPU method, the unwrapping success rate remains
stable, even with the fewest patterns due to its immunity to
additional noise from extra patterns and noise amplification
caused by phase weighting.

We then evaluate the computational efficiency of various
methods through plane measurement experiments conducted
on a laptop with an Intel Core i7-10750H CPU. Each method is
executed a thousand times to determine average computational
times and standard deviations accurately, and the results are
detailed in Fig. 11. The computational time for the proposed
VFPU method is 0.1528 s, which is faster than the other
methods. Furthermore, our method achieves lower memory
usage, requiring only 47.9 MB. These results demonstrate the
superior computational efficiency and memory consumption
of our method. The reason can be attributed to two factors:
first, the VFPU method requires only four images, whereas
others need at least eight; second, it directly calculates the
fringe order, avoiding intermediate computation such as the
low-frequency phase in multifrequency hierarchical methods
and the tripartite phase maps in the Tri-PU method. These
advantages make our method highly effective for practical
3-D measurement, offering enhanced measurement speed and
reduced system load.

In the second experiment, a printed circuit board (PCB) is
selected as the measured object. As the photograph shown in
Fig. 12(a) suggests, measuring the PCB is very challenging
for DFP systems due to the high dynamic range, drastic
height change, and severe inter-reflection. Fig. 12(b) shows

one of the captured fringe patterns, and Fig. 12(c) shows
the wrapped phase calculated from these patterns. The fringe
order is estimated pixel-by-pixel and shown in Fig. 12(d).
By combining the wrapped phase and the fringe order, the
absolute phase and the depth map are reconstructed, and the
results are illustrated in Fig. 12(e) and (f), respectively. As can
be seen, the proposed method recovers the geometry of the
PCB despite the aforementioned challenges.

Furthermore, several widely used methods are adopted to
measure the same PCB for comparison. All these meth-
ods use sinusoidal patterns with 16 periods to obtain the
wrapped phase, but determine the fringe order using different
extra patterns such as sinusoidal fringes, stair-phase fringes,
or Gray-code fringes. For the multifrequency method and the
phase-coding method, the shifting steps are both set to 4. For
the Gray-code method and the generalized Tri-PU method,
four extra binary patterns are required to encode the 16 fringe
orders. Fig. 13 shows the measurement results using different
methods, and the top-right rectangles are the enlarged views.
We first adopt the two-frequency hierarchical method, and the
result illustrated in Fig. 13(a) shows some artifacts, which
are primarily caused by the random noise amplified by the
phase weighting. To address these artifacts, we employ more
patterns to conduct the three-frequency hierarchical method.
The results in Fig. 13(b) suggest that the errors are effectively
reduced. We also conduct the two- and three-wavelength
heterodyne methods; the results in Fig. 13(c) and (d) sug-
gest that the hierarchical method outperforms the heterodyne
method, aligning well with existing studies [14]. However,
though more patterns are used, the unwrapping errors cannot
be completely resolved due to the phase weighting proce-
dure. Fig. 13(b) and (c) shows the measurement results of the
phase-encoding method and the Gray-code method, respec-
tively. Both methods suffer from strip-like depth artifacts
(also known as jump errors) because the fringe order and the
wrapped phase are not perfectly matched, which is caused by
optical defocus, motion blur, and surface texture [42]. The
results in Fig. 13(g) and (h) show that, compared with the
original Gray-code method, most jump errors are effectively
reduced. However, the noisy wrapped phase may induce new
unwrapping errors in the height-disconnected regions.
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Fig. 11. Measurement efficiency comparison.

Fig. 12. Measurement results of the PCB. (a) Photograph. (b) One of the captured fringe patterns. (c) Wrapped phase. (d) Fringe order. (e) Unwrapped
phase. (f) Recovered depth. The top-right red rectangle shows the enlarged view.

To make a quantitative comparison of these methods,
we calculate the root mean square error according to the
ground-truth phase map. The results, presented in Table II,
demonstrate that the proposed VFPU method achieves both
higher measurement speed and accuracy than traditional meth-
ods. Specifically, while the traditional methods require 8 or
12 fringe patterns to obtain the absolute phase, the proposed
method only needs 4, achieving at least twice the measurement
speed of the traditional methods. Moreover, the proposed
method exhibits fewer phase errors than other methods. Specif-
ically, the number of unwrapping-error pixels for the proposed
VFPU method is 2, significantly fewer than those observed
in traditional methods, and the corresponding RMSE is also

lower (0.0657 rad), suggesting its advantages in measurement
accuracy and efficiency. We further increase the shifting step
to eight to compare the accuracy with equal patterns, and
the RMSE further decreases to 0.0531 rad. Compared to
experiments conducted on the white plane, our proposed
VFPU method significantly outperforms the MF-3 method in
measuring PCBs, demonstrating its higher robustness when
dealing with objects that have complex geometries and high
dynamic ranges.

C. Comparison With the Conventional GCPU Method

We compare the proposed VFPU method with the con-
ventional GCPU methods to verify the advantages of the

Authorized licensed use limited to: SOUTH CHINA UNIVERSITY OF TECHNOLOGY. Downloaded on April 25,2025 at 10:49:05 UTC from IEEE Xplore.  Restrictions apply. 



5031613 IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, VOL. 73, 2024

Fig. 13. Measurement results using the traditional methods. (a) Two-frequency hierarchical method. (b) Three-frequency hierarchical method. (c) Two-frequency
heterodyne method. (d) Three-frequency heterodyne method. (e) Phase-coding method. (f) Gray-code method. (g) Misaligned Gray-code method. (h) Generalized
Tri-PU method. The top-right red rectangles show the enlarged view.

TABLE II
MEASUREMENT OF THE PCB

variable-frequency fringes. In the first experiment, we utilized
two methods to measure a step-shaped object with a significant
height disparity. Fig. 14 presents the experimental results,
where Fig. 14(a) and (b), respectively, displays the fringe
patterns captured using the traditional GCPU method and
the proposed VFPU method, illustrating the occlusion of the
steps causing discontinuities in the fringes. Fig. 14(c) and (d)
shows the corresponding reconstructed results for the two
methods. The traditional GCPU method fails to accurately
reconstruct the step due to the DRI that leads to phase
unwrapping errors. In contrast, the proposed VFPU method
successfully reconstructs the object, demonstrating that the
VFPU method is capable of effectively handling objects with
height variations and discontinuities.

In the second experiment, we place a white plane on a
height-adjustable vertical stage, starting at an initial height of
4 mm above the reference plane and increasing it by 1.5 mm
each time. Fig. 15 shows the measurement results. The existing
GCPU method recovers the plane correctly when it is relatively

Fig. 14. Measurement results for a step-shaped object. (a) and (b) Captured
fringe pattern for the GCPU method and the VFPU method, respectively.
(c) and (d) Reconstructed depth by the GCPU method and the VFPU method,
respectively.

low (e.g., 4 and 5.5 mm); however, the measurement fails as
the platform increases to 7 mm and beyond. Specifically, the
incorrectly measured parts sharply go down to almost 0, that is,
the reference plane, which is consistent with Fig. 3(b). On the
contrary, our proposed method correctly recovers the depth
at different heights. Moreover, we compare the measurement
error for these two methods at the initial height, where the
RMSE is 0.1000 rad for the GCPU method and 0.0964 rad
for the proposed VFPU method. These results demonstrate the
DRI problem for the traditional GCPU method, as well as our
superiority in both the measurement range and accuracy.

To compare the measurement performance in a real-world
industrial scenario, we select a PCB with a high-definition
multimedia interface (HDMI), which is relatively high, as the
tested object. As shown in the upper row of Fig. 16, when
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Fig. 15. Measurement results for planes at different heights of (a) conventional GCPU method and (b) our proposed method.

Fig. 16. Measurement result on the PCB with a tall HDMI. (a) and (b) Results
at the original position. (c) and (d) Results after rotating the PCB for 180◦

and keeping the height unchanged.

the interface is at the top, both methods correctly recover the
3-D shape; however, when the PCB is rotated by 180◦ while
maintaining the height unchanged, as shown in the lower row,
the proposed VFPU method is not affected, but the traditional
GCPU method fails to measure the HDMI correctly. This is
because, for the traditional GCPU method, the measurement
range at the bottom is smaller than the HDMI’s height,
resulting in incorrect phase unwrapping, which is consistent
with Fig. 3(c). These results suggest that the DRI problem
dramatically affects practical applications since correct mea-
surement results can only be obtained by manually placing
tall objects at specific positions. However, the measurement
systems are expected to handle flexible measurement objects
and automatically complete 3-D measurements with as little
manual intervention as possible. Obviously, it is challenging
for the GCPU method to handle automated measurement
scenarios such as production lines, while our proposed method
achieves robust and efficient measurement.

D. Discussion

In addition to the superiorities in accuracy, robustness,
and measurement depth range, the proposed VFPU method
presents an important advantage in that the measurement depth

range is throughout identical, and can be adjusted precisely,
which is very important in practical measurement. For the
traditional constant-frequency fringes, since the effective range
varies in the entire measurement field, it is very inconvenient to
determine the actual measurement range at specific positions to
judge whether the measurement is applicable. While increasing
the fringe period enhances the depth range at the narrower
side to satisfy the depth requirements, the overall accuracy
decreases. On the contrary, our proposed method calculates
the optimal variable frequencies based on the system geometry
parameters and measurement range requirements, not only
avoiding the waste of measurement range (i.e., the over-broad
side in the imbalanced depth range) but also making the fringes
as densest as possible to achieve higher accuracy.

The DRI problem arises due to the non-parallel light char-
acteristics of pin-hole lenses; therefore, the proposed method
can be applied to most DFP measurement systems equipped
with pin-hole lenses. The Scheimpflug lens, commonly used
in oblique measurement systems, cannot replace the proposed
VFPU method for addressing the DRI problem because the
non-parallel light condition remains unchanged. It is note-
worthy that there exist two exceptions. The first is when the
distance between the lens and the object is very far and the
field of view is very small so that the light rays can be regarded
as almost parallel. But this condition is rare due to the low
measurement accuracy; the second is when telecentric lenses
are used for both the camera and projector, but the increase in
hardware cost and structure size, as well as the limitation in
measurement scenarios, need to be taken into consideration.

The proposed method yields accurate and reliable results
within the pre-defined depth range. However, when the object
to be measured is so large that it exceeds the depth range,
the measurement will fail. Future research will concen-
trate on leveraging geometric constraints to enable robust
phase unwrapping without depth range limitations, including
post-processing such as learning-based methods to correct
erroneous unwrapped phases, and combining spatial informa-
tion or temporal information to improve fast and accurate 3-D
measurements.

V. CONCLUSION

This article presents a VFPU method for high-speed
3-D shape measurement. We demonstrate that the existing
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geometric constraint-based phase unwrapping methods suf-
fer from the DRI problem, causing unwrapping failure and
measurement errors. To address this problem, we present
an optimized variable-frequency fringe pattern. Unlike the
traditional constant-frequency fringes, the proposed method
theoretically determines the optimal fringe frequency accord-
ing to the system’s parameters and measurement depth range
requirements. The encoding and decoding methods for the
variable-frequency fringe patterns are detailed in this article.

Extensive experimental results demonstrate that the pro-
posed VFPU method outperforms the widely used multi-
frequency method, the phase-coding method, the Gray-code
method, the misaligned Gray-code method, and the general-
ized Tri-PU method for higher measurement efficiency and
accuracy. Furthermore, compared with the traditional geomet-
ric constraint methods, the proposed VFPU method effectively
addresses the DRI problem and achieves higher measurement
accuracy and robustness. Due to its high speed, high accuracy,
and high robustness, the proposed method has significant
advantages in high-speed 3-D measurement.
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