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Visual Grounding via Accumulated Attention
Chaorui Deng, Qi Wu, Qingyao Wu, Fuyuan Hu, Fan Lyu, Mingkui Tan

Abstract—Visual Grounding (VG) aims to locate the most relevant object or region in an image, based on a natural language query.
Generally, it requires the machine to first understand the query, identify the key concepts in the image, and then locate the target object
by specifying its bounding box. However, in many real-world visual grounding applications, we have to face with ambiguous queries
and images with complicated scene structures. Identifying the target based on highly redundant and correlated information can be very
challenging, and often leading to unsatisfactory performance. To tackle this, in this paper, we exploit an attention module for each kind
of information to reduce internal redundancies. We then propose an accumulated attention (A-ATT) mechanism to reason among all
the attention modules jointly. In this way, the relation among different kinds of information can be explicitly captured. Moreover, to
improve the performance and robustness of our VG models, we additionally introduce some noises into the training procedure to bridge
the distribution gap between the human-labeled training data and the real-world poor quality data. With this “noised” training strategy,
we can further learn a bounding box regressor, which can be used to refine the bounding box of the target object. We evaluate the
proposed methods on four popular datasets (namely ReferCOCO, ReferCOCO+, ReferCOCOg, and GuessWhat?!). The experimental
results show that our methods significantly outperform all previous works on every dataset in terms of accuracy.

Index Terms—Visual Grounding, Accumulated Attention, Noised Training Strategy, Bounding Box Regression

F

1 INTRODUCTION

V isual Grounding (VG) has attracted a lot of attention in
recent years [1,2,3,4,5,6]. Unlike object detection which

aims to detect the objects or the regions of interest given
the pre-defined class labels, VG aims to locate a specific
object in the image, based on a query in the form of natural
language. In practice, VG is an important technique for
machine intelligence. For example, it can be widely used
in the visual understanding system and dialogue system of
new generation intelligence devices such as home robots
and autonomous vehicles; it can also be embedded into
virtual assistants in PCs and smartphones.

However, in many real-world VG applications, the
queries can be very complex and the images often have
complicated scene structures, making the joint reasoning
between these two kinds of information very challenging.
To illustrate the challenge, we show a practical example in
Figure 1. In this example, the target object is the surfboard
specified by the yellow box. There are many irrelevant
concepts in the query, such as “beach”, “woman”, “dogs”,
“right”. As a result, a model needs to understand the
relation among those concepts and localize their positions
so as to focus its attention on the correct image regions.
Moreover, the image contains multiple objects, including
four surfboards with similar shape, size and color, which
requires the model to have a strong ability in dealing with
noisy information.

In practice, VG is commonly formulated as a multiple-
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The surfboard on the beach with 
a woman and two dogs right next to it.

Fig. 1. A typical visual grounding example. Given the image and the
query, we are asked to locate the target object in the image that is
specified by the query, as the surfboard outlined by the yellow box.

choice problem over a set of object proposals, where the
proposal can be either human-labeled or detected by an ob-
ject detector such as Faster RCNN [7] or SSD [8]. A general
workflow for VG is to first construct a feature representation
for each object proposal as well as the input query. After
that, a matching score is obtained for each proposal-query
pair based on their representations, and then the object
proposal with the largest matching score is selected as the
final prediction. Note that in general, the human-labeled
object proposals have accurate and reliable bounding boxes.
But in practice, we may have only detected object proposals
using off-the-shelf detectors, and these proposals may con-
tain substantial noisy bounding boxes, making the VG task
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more challenging in real-world scenario.
Many previous methods of VG put emphasis on the

matching step. For example, in [1], the authors obtain the
visual feature of each object proposal o, and feed them along
with the global image feature I into a caption generator
(i.e., an LSTM [9]) to compute the conditional probability
P (s|o, I) of reconstructing the input query. The probabilities
are then utilized as the matching score to rank the proposals.
In [5], besides using a caption generator to perform the
matching step, the author further trains two MLPs (Multi-
Layer Perceptron) to project the paired object and query
representations into the same dimensional space, where the
distance between the paired representations is adopted as
another ranking metric. However, these methods take fewer
efforts in improving the feature representations for VG, i.e.,
when constructing the feature of an object proposal, they
simply adopt its CNN (Convolutional Neural Network)
feature, without considering the relations among each object
proposal. Similarly, they compress the whole input query
into a static context vector through an LSTM, which has
been shown to be problematic due to the loss of informa-
tion [10, 11]. Moreover, the object proposal and query are
processed separately before sent into the matching module,
which may hamper the joint reasoning between the visual
and textual information.

To this end, we propose an Accumulated Attention (A-
ATT) mechanism, which provides an attention module for
each kind of input information (i.e., query, image, and object
proposals) to focus on the essential elements of the infor-
mation. Moreover, these attention modules transfer knowl-
edge with each other to refine their attention in a circular
manner, where the attended feature representation of one
information source will serve as an “attention guidance”
when updating the attention weights for other types of
information. Hence, A-ATT mechanism explicitly captures
the latent relations among different information sources and
reduces the information redundancies, thus it is able to
construct compact and informative feature representations.

Apart from this, existing methods suffer from another
problem, i.e., they train their VG models with the human-
labeled object proposals (which have accurate bounding
boxes). However, when applied on data with detected ob-
ject proposals (the bounding boxes are very noisy), their
performances degrade severely due to the huge distribu-
tion gap between the training and inference data. This
problem deters the application of many VG algorithms in
real-world scenarios because of the lack of human-labeled
object proposals. Directly training these VG models with
the detected object proposals, however, can only lead to
poorer performance, due to the inferior performances of
object detectors compared with human beings.

To alleviate this problem, we further propose to train
VG models with “noised” human-labeled object proposals,
where the bounding boxes of the object proposals are ran-
domly shifted, scaled, and resized by a small extent to sim-
ulate the detected object proposals. Moreover, this noised
bounding boxes further enable us to learn a bounding box
regressor after the matching step of VG to refine the best-
matched proposals, therefore improving the performance
on VG data with detected object proposals. In this sense,
we propose a noised training strategy, which contains three

stages, i.e., bounding box augmentation, bounding box re-
gression, and end-to-end fine-tuning. In our experiments,
the noised training strategy significantly improves the per-
formance of our A-ATT models on VG tasks with detected
object proposals. More critically, it can also be applied
in many other VG methods and bring clear gains in the
performance. More importantly, the noised training strategy
increases only negligible computation complexity. Thus, it
can be adopted as a general training paradigm for VG.

Our main contributions are summarized as follows:
Firstly, we propose a novel Accumulated Attention (A-ATT)
mechanism to jointly model the complex relations among
multiple kinds of information, and apply it on the VG task.
Secondly, we propose to use a “noised” training strategy to
bridge the distribution gap between the training data and
the real-world VG data, which can be adopted as the basic
configuration for general VG models . Thirdly, we evaluate
the proposed methods on four datasets, i.e., ReferCOCO
[4], ReferCOCO+ [4], ReferCOCOg [12] and GuessWhat?!
[13] and show that our methods outperform previous best
results by a large margin in terms of accuracy.

This paper extends our CVPR paper [14] with the follow-
ing new contents: 1) we extend A-ATT mechanism based on
the idea of self-attention; 2) we propose a “noised” training
strategy to improve the generalization performance for gen-
eral VG models on data with detected object proposals; 3)
More experimental results are provided, including extensive
comparisons on testing data with detected object proposals
and more ablation studies.

2 RELATED WORKS

As a research direction across vision and language, VG
has benefited from the development of Convolutional Neu-
ral Networks (CNNs) [15, 16], Recurrent Neural Networks
(RNNs) [9, 17], and other research areas such as Image
Captioning [18, 19, 20], Visual Question Answering (VQA)
[21, 22, 23, 24], and Object Detection [7, 8, 25].

Vision and Language The interplay of vision and lan-
guage has been studied extensively in recent years, and lots
of new tasks have been proposed to promote the research
and push the boundaries of both fields, such as Image
Captioning, Visual Grounding (VG), and Visual Question
Answering (VQA). Research on these tasks has produced
plenty of powerful methods for joint reasoning among the
visual and the textual inputs, providing valuable insights
and solid foundations for the following studies.

Image Captioning takes an image as input and aims to
generate a natural language caption to describe it. Most
methods in this research area adopt the encoder-decoder
architecture [11,20,26], where the encoder encodes informa-
tion from the image (with a CNN) into a context vector, and
the decoder then decodes the context vector into a sequence
of word tokens through an RNN.

VQA requires reasoning over visual concepts of the
image and general knowledge to infer the correct answer for
a natural language question. A simple baseline for VQA [27]
is to use CNNs and RNNs to learn representations of images
and sentences in a common feature space, following by feed-
ing those representations jointly into a matching module
that selects the correct answer. To improve the performance
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Fig. 2. The overall architecture of the proposed methods. The input object proposals are randomly jittered before sending into the object feature
extractor to extract their feature. We use three attention modules to handle the attention problems for image, query, and object proposals. The
A-ATT mechanism can be performed for multiple rounds to ensure a sufficient communication among different information, as shown in the dashed
box. After the last round of A-ATT, we feed the attended proposal into a bounding box regressor to refine its bounding box.

on VQA, many novel methods have been proposed, such
as Neural Module Networks [28, 29, 30], Dynamic Memory
Networks [31, 32], and methods using external knowledge
bases [33].

Visual Grounding The VG task requires a model to
respond to a query by specifying its corresponding object
in an image. Generally, VG is formulated as a multiple-
choice problem over a set of pre-defined object proposals,
thus a matching module is required to match the target
object proposal with the input query and image. Some
methods [1, 2, 4, 34, 35] view the VG task as a reverse of the
image captioning task, where they feed each proposal into
an image captioning model to calculate the probability of
generating the input query. Then, the proposal that yields
the largest probability is selected as the target object. Some
methods [6,36,37], on the other hand, seek to directly embed
the target object proposal with the input image and query
into a close region in a multi-model representational space.
Taking advantages of both the above mentioned approaches,
Yu et al. [5] introduce a Speaker-Listener-Reinforcer model
which takes the image captioning model as the speaker, the
joint embedding model as the listener, and performs query-
object matching separately in both the speaker module and
the listener module.

More recently, Zhang et al. [38] propose a Variational
Context model which exploits the relation between the
image and query to improve the context information by
a variational Bayesian method. In [39], the authors de-
sign three matching modules (i.e., subject module, location
module, and relationship module) to handle the matching
problem in three aspects. They adopted more powerful
feature extractors to process the input information. Unlike
these methods, we perform cross-modal attention to reason
among different kinds of information with multiple steps.
This idea is later adopted in [40], where a Multi-hop FiLM
model is proposed to perform multi-step reasoning between
the image and language information. Different from Multi-
hop FiLM, our A-ATT mechanism reasons among three
types of information (i.e., image, query, and object propos-
als) jointly and further considers the self-attention guidance
to explore a more diversified interaction among multiple
information sources.

Attention Mechanism The attention mechanism has be-
come a research hot-spot, for its simplicity and effectiveness
in dealing with multi-modal information. The general idea
is that when constructing a representation for a sequence
of information, maybe only a small subset of the sequence
is relevant to the downstream tasks. Therefore, we can
explicitly learn to pay our attention to the most relevant
elements in the sequence according to some “attention
guidance” so as to boost the performance of the down-
stream tasks. In practice, it has already been applied to
a wide range of Computer Vision and Natural Language
Processing tasks [10, 11, 41, 42, 43, 44, 45]. Many prior works
[46, 47, 48, 49, 50, 51, 52] in these years seek to make some
advancements in attention mechanism, where they focus on
hierarchically-structured attention mechanism or memory-
based attention mechanism. In [43,53], the authors proposed
the Self Attention mechanism which captures the latent
relations among the different elements of a sequence of
information.

Object Detection Currently, VG still relies on a pre-
trained object detector to generate a set of object proposals,
and the performance of VG methods can be heavily affected
by the quality of the detected object proposals. In an extreme
case, a VG task will never succeed if its target object is
missed by the pre-trained detector. Therefore, it is crucial
to ensure the pre-trained detector to have a high recall
rate, especially for the target object. Some object detectors
[7,8,54] can generate relatively accurate object proposals for
every object in the image. There are also many faster but
less accurate object detectors, such as MultiBox [55], BING
[56], and Selective Search [57], where they have to increase
the number of proposals to improve the recall rate. Another
strategy that can effectively improve the recall rate is to use
a bounding box regressor [58] to predict a correction offset
and use it to refine the predicted bounding box, so as to
increase the Intersection over Union (IOU) scores between
the predicted and the ground-truth bounding box of an
object proposal.

3 PROPOSED METHOD

Given an image I , a query Q, and N object proposals
{o1, o2, . . . , oN}, visual grounding aims to learn a hypoth-
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esis H that maps Q and I to the target object o∗, i.e.,
H(I,Q) → o∗. In practice, VG is a challenging task due
to the complex correlations and heavy information redun-
dancies in the image, query and object proposals.

To tackle this, we first extract a sequence of feature from
Q, I and {oi}, respectively. Then, for each sequence, we
employ our Accumulated Attention (A-ATT) mechanism to
assign attention weights for its elements with the other two
feature sequences as the attention guidance. In this way, the
information redundancies can be reduced, and the latent
relations among different feature sequences can be explicitly
captured. Afterward, the object proposal with the largest
attention weight is selected as the prediction ô. We further
refine its bounding box with a bounding box regressor. The
overall model architecture is illustrated in Fig. 2.

In the following, we first introduce the feature encoding
for image, query, and object proposals in Sec. 3.1. Then, our
core algorithm, the Accumulated Attention mechanism, is
introduced in Sec. 3.2. In Sec. 3.4, we demonstrate how to
handle the inconsistent data distribution during training
and inference with a “noised” training strategy.

3.1 Feature encoding
3.1.1 Query feature
In real-world visual grounding applications, the query may
have multiple forms. For example, it can be a short phrase
like “red hat”, a sentence “the hat on a woman with a black
jacket”, or even a complex dialogue [13]. Take the sentences
in ReferCOCO [4] as an example. A sentence consists of a
sequence of words Q = {q1, q2, ..., qT } (T is the number
of words). We first use a word embedding layer to encode
each word qt into a fix-length vector qt. Then, we feed the
encoded sentence into an LSTM [9] and collect the hidden
state h at every recurrent step as the sentence feature. For
more complex queries (e.g., multi-round dialogues), we can
adopt a hierarchical recurrent architecture [46] to model
the query in multiple levels. Besides, we can also use the
bidirectional LSTM to obtain a better representation of the
query information. Denote the query feature sequence as
S = {s1, s2, ..., sT }, where st = ht is the feature represen-
tation for t-th word in the sentence.

3.1.2 Image feature
In practice, we can use Convolutional Neural Networks
(CNNs), such as VGG-16 [16] and ResNet-101 [15], to extract
the image feature. Without loss of generality, we construct
the image feature sequence V = {v1,v2, ...,vL} using the
feature maps M ∈ Rw×h×c at the last convolutional layer
of the feature extractor, where each vi ∈ Rc corresponds to
a region in the image, and the sequence length L = w × h.

3.1.3 Object proposal feature
Following [13], we represent the object proposal with two
kinds of feature: the local feature and the spatial feature.
Unlike many previous methods [1,4,6,35] which extract the
local feature ol by cropping the corresponding image region
of the object proposal and feeding it into a deep CNN,
we use RoIAlign [25] for its efficiency and its comparable
performance. Given the input feature map M and an object
proposal, the bounding box of the proposal is first divided

RoiAlign

Depth-wise
Conv

Bbox
embedding

Outer
product

fc 𝒐𝑖
𝑙

Feature maps

Fig. 3. We construct the local feature for an object proposal directly from
the feature maps of the whole image with RoIAlign. We then use depth-
wise separable convolution to reduce the dimension of the local feature,
and fuse the spatial feature and the local feature by taking their outer
product following by a linear transformation.

into k × k bins, then we average-pool the pixel values in
each bin to generate a k × k output feature map:

ol(i, j) =
1

nij

∑
p∈bin(i,j)

M(p), i, j ∈ {1, ..., k}, (1)

Here, p indicates the coordinate of the pixels, and nij is
the number of pixels in bin(i, j). Specifically, p is fractional
to avoid the quantization of the boundary of the bins so
that the misalignment between the extracted feature and
the object proposal can be reduced. Then, we use bilinear
interpolation to compute the exact pixel value at p.

Afterward, the spatial feature os is represented by:

os = [
x

wimg
,
y

himg
,
wbox

wimg
,
hbox

himg
], (2)

where (x, y) is the coordinate of the top-left corner of the
bounding box, and wimg (himg) and wbox (hbox) denote the
width (height) of the image and the bounding box, respec-
tively.

Note that the dimension of local feature ol ∈ Rk×k×c
is usually orders of magnitude larger than the dimension
of os ∈ R4. Thus, the model tends to be dominated by
the local information of the object proposal. To tackle this,
we apply a depth-wise separable convolutional layer [59],
denoted by fds, on ol to reduce the spatial size and channel
number. Specifically, the kernel size and output channel of
fds are set to k and c’ (c’ < c), respectively, and the output
of fds(ol) is a c’-dimensional vector. One may also use a
normal convolutional layer to replace fds, but it leads no
clear gain in practice. Last, to obtain the feature of an object
proposal, we follow [6, 60] and fuse the local feature ol and
spatial feature os by

o =W [fds(o
l)⊗ os] (3)

The above fuse strategy help to facilitate the element-wise
interactions between ol and os. Here, ⊗ denotes outer
product, [·] vectorizes the matrix in vector, andW is a linear
transform. The whole process is illustrated in detail in Fig. 3.
Denote the collection of the object proposal representations
as O = {o1,o2, ...,oN}.

3.2 Accumulated Attention (A-ATT) mechanism
In this section, we demonstrate how to obtain compact and
informative feature representations for multiple information
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sources jointly by constructing extensive interactions among
them through the A-ATT mechanism.

Accumulated Attention. Assume that we have extracted
C feature sequence {Xi}Ci=1 from C kinds of information,
where Xi = {xi1, ...,xini} ∈ Rdi×ni is a feature sequence
with feature dimension di and sequence length ni. The
A-ATT mechanism employs an attention module for Xi

to calculate attention weights for its elements, with the
guidance from other attention modules:

Hij = tanh(W>
i xij +

C∑
c6=i
W>

c x̃c + b),

αij =
exp (W>

h Hij)∑ni

k=1 exp (W
>
h Hik)

, j = 1, 2, ..., ni.

(4)

Here, αij is the attention weight for the j-th item inXi, and
{x̃c|1 ≤ c ≤ C, c 6= i} denotes the “attention guidance”
provided by other attention modules, which are initialized
as zero tensors if they are not available. Wi ∈ Rdi×dh ,
{Wc ∈ Rdc×dh}Cc6=i, Wh and b ∈ Rdh×1 are learn-able
parameters related to each information source, and are
shared across all attention modules (dh is the dimension of
H). Then, we compute the summarized representation x̃i of
feature sequence Xi by:

x̃i =
ni∑
j=1

αijxij , (5)

where x̃i is then serving as the attention guidance for other
attention modules.

Multi-round Accumulated Attention. For simplicity, we
denote the attention process in Eqn. (4) and (5) as ATT(·).
Then, for each feature sequence Xi, with the input atten-
tion guidance {x̃c}c6=i, we can obtain its attended feature
through:

x̃i = ATTXi({x̃c}c6=i). (6)

Obviously, the computation in Eqn. (6) forms a circu-
lation: the summarized representation of each feature se-
quence will be reused to refine attention weights of other
feature sequences, and update their corresponding summa-
rized representations. Therefore, we can perform Eqn. (6) for
multiple rounds to facilitate the interaction among different
information:

x̃ri = ATTXi
({x̃rc}c<i, {x̃r−1c }c>i), (7)

where r indicates the round index. Ideally, we can obtain
a better attention as the number of round grows, since the
summarized representation x̃ri is incrementally refined after
each round. However, it does not necessarily mean that the
performance will be always improved with more rounds
proceed. In other words, the performance may saturate once
a sufficient interaction among multiple information sources
is achieved.

To explore a more diversified interaction, we follow the
idea of self-attention [43,53], and adopt the attended feature
of Xi in all previous rounds, i.e., {x̃ti}r−1t=1 , to guide the
attention on Xi at current round:

x̃ri = ATTXi({x̃rc}c<i, {x̃ti}r−1t=1 , {x̃r−1c }c>i). (8)

In this way, for eachXi, we can not only capture its relation
with other feature sequences, but also discover the latent

S

O

V

Fig. 4. The A-ATT mechanism for one-round VG. Bold lines denote the
A-ATT process, and dash lines denote the attention guidance.

relationship among its own elements, which can provide a
comprehensive modeling for all input information sources.
Moreover, by utilizing {x̃ti}r−1t=1 as the attention guidance
for the r-th round, shortcut connections are constructed
between the r-th round and all previous rounds, which
facilitates the information propagation among the attention
modules and ease the training of the whole model.

Similar to [14], the parameters {Wc}, Wh, and b can
be shared across different rounds to avoid the over-fitting
problem (see Sec. 4.5.4). However, this may also limit the
representation ability of the model, since we have to use
the same parameters to construct the correlations among
the attention modules at different rounds. In the following
sections, we will show how we prevent the model from
over-fitting by adding noises into the training data and
introducing regularization terms in the training objective.
Thus, we can maintain a set of parameters for each round to
improve the representation ability of our model.

3.3 Apply A-ATT on VG

Based on the proposed A-ATT mechanism, our VG model
is built-in with three types of attention module to handle
the feature sequences S (query), V (image) and O (object
proposals) extracted in Sec. 3.1. Specifically, the attention
module for O (denote as ATTO) is able to perform the
matching step of VG, while the attention modules for S
and V (denote as ATTS and ATTV , respectively) help us
obtain a better feature representation for the input image
and query, which can ease the matching problem in ATTO .

According to Eqn. (8), we can obtain the attended fea-
tures of S, V , O at r-th round through:

s̃r = ATTS({s̃t}r−1t=1 , ṽ
r−1, õr−1)

ṽr = ATTV (s̃r, {ṽt}r−1t=1 , õ
r−1)

õr = ATTO(s̃r, ṽr, {õt}r−1t=1 ),

(9)

where s̃r, ṽr and õr will then be passed to the next
round of A-ATT (and keep flowing through the following
rounds) to refine the attention weights of the corresponding
feature sequences. During this circulation, the attention on
the useful information in each feature sequence will be
accumulated, while the attention on noises will fade out,
leading to a improved summarized representation for each
kind of information. We give a illustration of the A-ATT
mechanism for VG in Fig. 4.
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To ground the query into the image, at the last round
of A-ATT, we directly adopt the attention module for ob-
ject proposal ATTO(·) to perform the matching step. I.e.,
matching the summarized representations of image and
query (ṽr and s̃r) as well as the summarized representations
of object proposals at previous rounds ({õt}r−1t=1 ) with the
representation of each object proposal oi. The best-matched
proposal is selected as the prediction.

In practice, however, it is not necessary to perform A-
ATT for too many rounds [14], since increasing the number
of round may incur difficulties in model optimization due
to the vanishing of training signal. Besides, we may also
encounter a learning plateaus as the round of accumulation
grows. Last, a large number of round will incur increased
computation complexity.

3.4 Noised training strategy
As mentioned in Sec. 1, there exists a huge distribution
gap between the training data and the real-world data in
previous VG methods: their models are trained with human-
labeled object proposals, which have accurate bounding
boxes for every object in the image. However, in practice,
we may only have the object proposals detected by off-the-
shelf detectors such as Faster RCNN [7] and SSD [8], thus
the bounding boxes can be noisy. More critically, the object
detectors may even fail to detect the target object (i.e., the
IOU score between the detected bounding box and the target
bounding box is less than 0.5), in which case the VG task
will definitely fail. To tackle this problem, in this section, we
propose a noised training strategy, which typically consists
three stages, i.e., bounding box augmentation, bounding box
regression, and end-to-end fine-tuning.

3.4.1 Bounding box augmentation
First, we perform bounding box augmentation onto the
bounding boxes of the human-labeled object proposals,
which i.e., randomly shifts, scales, and resizes these bound-
ing boxes to a small extent to approximate the bounding
boxes of detected proposals. Formally, we represent the
original bounding box of an object proposal as a four-tuple
b = (x, y, w, h), where (x, y) denote the top-left corner; w
and h denote its width and height. Then, we also represent
the noise as a four-tuple ε = (εx, εy, εw, εh), where

εx
w
∼ N (0, σx),

εy
h
∼ N (0, σy),

εw
w
∼ N (0, σw),

εh
h
∼ N (0, σh).

(10)

The noise level is jointly controlled by σ and the width or
height of the corresponding bounding box. Afterward, the
noised bounding box is obtained by bε = (x+εx, y+εy, w+
εw, h+εh). Moreover, we adopt the truncated version of Eqn.
(10) to make sure the noised bounding box of each object
proposal has the largest IOU (Intersection over Union) score
with its original ground-truth box rather than the ground-
truth boxes of other object proposals.

By adding noises into the training data, a VG model can
learn to handle inaccurate bounding boxes during training.
Therefore, the model can generalize better on testing data
with detected object proposals. In Fig. 5, we show a com-
parison of the detected object proposal, the human-labeled
object proposal and its noised counterpart.

(f)(e)

(d)(c)

(a) (b)

the surfboard on the beach with a woman 
and two dogs right next to it.

Fig. 5. Different kinds of proposals for a VG example. (a) the original
image; (b) the human-labeled object proposals; (c) and (d) two set
of noised human-labeled proposals with different random noises; (e)
detected object proposals, the target are successfully detected (the red
box); (f) detected object proposals, a “definitely fail” case for VG where
the target objects are missed.

After we perform bounding box augmentation, we use
the noised human-labeled proposals to train the A-ATT
mechanism. Specifically, we minimize the cross-entropy loss
between the model prediction ô and the target o∗:

Lcls = −
1

m

m∑
i=1

logαo∗(i). (11)

Here, m is the batch size, i is the index of the training
sample. The attention weight αo∗ is calculated by Eqn. (4),
and represents the predicted probability P (ô = o∗).

In addition, we follow [11] and add a regularization term
for each attention module, i.e.,

Lxreg = λx

nx∑
i

(1−
R∑
r

αri )
2, (12)

where αri denotes the attention weights computed for the
i-th elements in the feature sequence X at the r-th round of
A-ATT mechanism, nx denotes the length of X , and λx is a
hyper-parameter. By introducing these regularization terms,
we encourage the model to pay equal attention to every
part of the information at different round so as to prevent
the model from over-fitting. We train the A-ATT mechanism
with the following loss function until it is converged:

Latt = Lcls +
∑
x

Lxreg +
λ

2
||W ||2. (13)

Here, the term λ
2 ||W ||

2 is a weight decay term, with λ being
a weight decay parameter.
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3.4.2 Bounding box regression
The noises introduced in the bounding box augmentation
stage also enable us to learn a bounding box regressor
with the human-labeled object proposals and their noised
counterparts. Specifically, the bounding box regressor takes
the feature o∗ of a noised object proposal (see Sec 3.1.3) as
input and aims to predict an offset tuple δ = (δx, δy, δw, δh)
so that we can restore the original bounding box of the
proposal. Thanks to this bounding box regressor, when
the VG model is evaluated on testing data with detected
object proposals, the IOU between the bounding boxes of
predicted and target object proposals can be significantly
increased, and the “definitely fail” case can be effectively
avoided.

Denote the ground-truth bounding box of the tar-
get object proposal o∗ and its noised version as b∗ =
(x∗, y∗, w∗, h∗) and b∗ε = (x∗ε , y

∗
ε , w

∗
ε , h
∗
ε ), respectively. Then,

the regression loss is defined as:

Lbbox =
∑

k∈{x,y,w,h}

1

η
· Lhu(k

∗
ε + δk, k

∗), (14)

where η = w for k ∈ {x,w} and η = h for k ∈ {y, h}. Lhu
indicates the smoothL1 loss [58]:

Lhu(t̂, t) =


1

2
(t̂− t)2 for |t̂− t| ≤ 1,

|t̂− t| − 1

2
otherwise.

(15)

In practice, the smoothL1 loss is more robust than the
commonly used L2 loss, since it is less sensitive to outliers.

3.4.3 End-to-end fine-tuning
Lastly, like in [7], we can combine the Eqn. (13) and (14)
together to fine-tune the whole model in an end-to-end
manner to obtain a joint optimal solution:

L = Latt + γLbbox, (16)

where γ is a hyper-parameter to balance Latt and Lbbox.
Typically, for some training samples, our A-ATT model may
make wrong predictions (ô 6= o∗), then the difference be-
tween k̂+ δk and k∗ in Eqn. (14) can be very large, resulting
in large gradient values that may damage the bounding
box regressor. Therefore, we adopt gradient clipping for the
bounding box regressor during end-to-end fine-tuning.

4 EXPERIMENTS

In this section, we first evaluate the performance of the
proposed A-ATT mechanism on human-labeled object pro-
posals. Then, we evaluate the performance of our “noised”
training strategy on detected object proposals. Lastly, we
conduct several ablation studies on the components in A-
ATT, and visualize the attention within our A-ATT model.

4.1 Datasets
We test our methods on four datasets: ReferCOCO, Refer-
COCO+, ReferCOCOg and GuessWhat?!. In ReferCOCO
and ReferCOCO+ [61], the average length of queries is
around 3.6, indicating that their queries are mostly short
phrases. The difference is that the queries in ReferCOCO+

are not supposed to contain any location words, such as
“left”, “front”. In ReferCOCOg, the queries are normal sen-
tences, which have an average length of 8.43. Moreover, in
ReferCOCO(+), the average number of objects of the same
type is about 3.9, whilst in ReferCOCOg, this number is
limited to 1.6. GuessWhat?! [13] is collected by a two-player
game, where the queries are all multi-round dialogues. The
average number of question-answer pairs in each dialogue
in GuessWhat?! 5.4. Both ReferCOCO and ReferCOCO+
contain nearly 20k images, 142k queries, and 50k target ob-
ject proposals. ReferCOCOg has about 26.7k images, 85.5k
queries, and 54.8k target object proposals. In GuessWhat?!,
there are 66.5k images, 155.3k dialogues, and 134.1k targets.

Following [4], we split ReferCOCO(+) into 40,000 train-
ing, 5,000 validation, and 5,000 testing samples, where the
testing set are further split into “TestA” and “TestB”. More
precisely, images containing multiple people are put into
“TestA”, while images containing multiple instances of all
other categories are in “TestB”. ReferCOCOg is split into
49,822 training and 5,000 validation samples. For Guess-
What?!, we follow [13] and split it into training, validation,
and testing set by a fixed proportion of 70%, 15%, and 15%.

4.2 Implementation details

In our basic implementation, we use VGG-16 as our image
feature extractor for fair comparisons, and pre-train it on the
ImageNet [64] dataset. The input image is resized to have a
short side of 448 pixels before fed into the VGG-16. We adopt
the output of the last convolutional layer (C5) as the image
feature, which has a spatial size of 14 × 14. To obtain the
feature for an object proposal, we perform RoIAlign on the
output of the fourth convolutional block (C4), and we set the
number of bins k2 = 7 × 7. We use an LSTM to encode the
query feature, where the word embeddings (300-D) are pre-
trained with GloVe model on the LM-1B [65] corpus, and the
hidden state dimension of the LSTM is 512. If a query has
tokens that are not in the pre-trained word embeddings (e.g.,
misspelled words), we initialize them as random vectors.

To determine the value of the hyper-parameter σ in
Eqn. (10), we adopt a widely used object detector (SSD) to
perform object detection on images in ReferCOCO dataset,
and analyze the distribution of the normalized offsets
(x′−x)
w , (w

′−w)
w , (y

′−y)
h , (h

′−h)
h between the bounding boxes

of the ground-truth object proposals (x, y, w, h) and their
best matched detected object proposals (x′, y′, w′, h′). We
find that setting σx = 0.06, σy = 0.06, σw = 0.12, σh = 0.10
for the object proposals can be good for our setting.

During training, we use Adam [66] with an initial step
size of 0.001 for training the A-ATT mechanism, and use
momentum SGD to optimize the bounding box regressor,
where the step size is 0.01 and the momentum is 0.9. The
hyper-parameter λx and λ in Eqn. (13) is set to 0.05 and
5e-4, respectively. The γ in Eqn. (16) is set to 0.5. We train
the whole model for 60 epochs (30 epochs for the first stage,
15 for the second stage, and 15 for end-to-end fine-tuning),
and we use 8 GPUs with 2 training sample on each GPU,
resulting in a batch size of 16.

We implement 4 versions of the proposed A-ATT mech-
anism, namely, A-ATT-1, A-ATT-2, A-ATT-3, and A-ATT-4
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TABLE 1
Comparisons on ReferCOCO, ReferCOCO+ and ReferCOCOg on human-labeled object proposals. The parameters at different rounds are shared

in A-ATT-{1,2,3,4} and their noised versions. All comparing methods use VGG16 features.

Methods ReferCOCO ReferCOCO+ ReferCOCOg
Val acc TestA acc TestB acc Val acc TestA acc TestB acc Val acc

visdif [4] - 67.57 71.19 - 52.44 47.51 59.25
MMI [2] - 71.72 71.09 - 58.42 51.23 62.14
[62] - 74.14 71.46 - 59.87 54.35 63.39
Neg Bag [34] 76.90 75.60 78.00 - - - 68.40
speaker+listener+reinforcer+MMI [5] 79.56 78.95 80.22 62.26 64.60 59.62 72.63
Variational Context [38] - 78.98 82.39 - 62.56 62.90 73.98
MattN [39] 80.94 79.99 82.30 63.07 65.04 61.77 73.08
A-ATT-1 [14] 79.19 79.67 78.16 64.45 66.51 58.84 72.33
A-ATT-2 [14] 80.68 81.37 79.79 65.35 68.36 60.19 72.67
A-ATT-3 [14] 80.98 81.67 79.96 65.50 67.92 60.69 72.94
A-ATT-4 [14] 81.27 81.17 80.01 65.56 68.76 60.63 73.18
A-ATT-1 78.97 79.71 78.24 64.51 66.77 58.85 72.19
A-ATT-2 81.03 81.56 80.72 65.93 68.67 61.04 73.74
A-ATT-3 81.67 82.33 81.32 66.59 68.84 62.31 74.79
A-ATT-4 81.45 82.00 81.89 65.82 68.47 62.03 74.61
A-ATT-1 (bbox augmentation) 79.02 79.54 78.26 64.63 66.77 58.72 72.15
A-ATT-2 (bbox augmentation) 81.14 81.62 80.99 66.27 68.86 61.67 73.95
A-ATT-3 (bbox augmentation) 82.10 82.98 81.78 67.08 69.49 62.01 75.81
A-ATT-4 (bbox augmentation) 81.95 82.85 82.16 67.13 69.12 62.39 75.50

TABLE 2
Comparisons on GuessWhat?! with human-labeled object proposals.

Model Validation error Testing error
HRED [13] 38.2 39.0
Parallel Attention [63] 36.2 36.6
A-ATT-1 36.7 37.9
A-ATT-2 34.3 34.6
A-ATT-3 33.2 33.9
A-ATT-4 33.0 33.3

w.r.t different rounds. Here, the first round, i.e., A-ATT-
1, is used for warming-up, since no attention guidance is
available in the beginning.

4.3 Performance of the A-ATT mechanism

In this section, we evaluate the performance of the proposed
A-ATT mechanism. We train and evaluate our model on
data with human-labeled object proposals. Moreover, in this
setting, we share the parameters among different rounds by
default to avoid the over-fitting problem.

4.3.1 Results on human-labeled object proposals
Here, we present the results on ReferCOCO, ReferCOCO+,
ReferCOCOg, and GuessWhat?! dataset with human-
labeled object proposals. As shown in Table 1, A-ATT-3
achieves the best results on the Val split of ReferCOCO
(81.67 vs. 80.94), ReferCOCO+ (66.59 vs. 63.07) and Refer-
COCOg, as well as the best results on the TestA split of
ReferCOCO (82.33 vs. 79.99) and ReferCOCO+ (68.84 vs.
65.04). Moreover, on these dataset splits, the performances
of A-ATT-2 and A-ATT-4 are also very competitive, which
outperform the previous best results on most of the splits by
a considerable margin. On the TestB split of ReferCOCO and
ReferCOCO+, A-ATT-3 and A-ATT-4 also perform compara-
bly to the previous best results. On GuessWhat?!, the A-ATT

mechanism surpasses the previous best results significantly,
see Table 2. These empirical results verify the superiority of
our proposed A-ATT mechanism.

Note that the warm-up phase, i.e., A-ATT-1, is able to
produce comparable or slightly improved results with the
previous state-of-the-art methods on some dataset splits,
indicating the strong ability of our A-ATT mechanism in
joint reasoning among multi-model information. After the
warm-up phase, the attention guidance generated by A-
ATT-1 will be adopted to refine the attention weights in
A-ATT-2. That is, the attention begins to accumulate. As a
result, A-ATT-2 significantly improves the performance on
top of A-ATT-1 (e.g., +2.06% on ReferCOCO Val).

The attention accumulation process, however, may yield
only slight improvement after three or four rounds of A-
ATT process. For example, A-ATT-3 and A-ATT-4 may only
lead to less than 1% gains in accuracy on the top of A-ATT-
2. As we discussed in Section 3.3, this may because of that,
for an easy setting of VG, like using human-labeled object
proposals in the above VG datasets, two rounds are already
sufficient for the proposed A-ATT mechanism to achieve
good interactions among all types of information. As a
result, A-ATT-2 performs competitively on all dataset under
this setting, while further rounds (A-ATT-3 and A-ATT-
4) only bring small gains, i.e., the performance saturates.
In the following sections, we will show that on a more
challenging VG task, i.e., using detected object proposals,
attention accumulation still bring further gains.

We have two modifications on our CVPR Version [14]:
1) We exploit the self-attention guidance to improve the A-
ATT mechanism; 2) We adopt bounding box augmentation
to train our A-ATT mechanism. From Table 1, we see a clear
performance improvement for these two modifications.

4.3.2 Results on detected object proposals
Here, we analyze the performance of the A-ATT mechanism
on ReferCOCO, ReferCOCO+, and ReferCOCOg with de-
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TABLE 3
Comparisons on ReferCOCO, ReferCOCO+ and ReferCOCOg with detected object proposals. The parameters at different rounds are shared in

A-ATT-{1,2,3,4}, and unshared in all their noised training versions. All methods use VGG16 features and SSD-detected object proposals.

Methods ReferCOCO (detected) ReferCOCO+ (detected) ReferCOCOg (detected)
TestA acc TestB acc TestA acc TestB acc Val acc

[62] 67.94 55.18 57.05 43.33 49.07
speaker+listener+reinforcer [5] 72.34 63.24 59.36 48.72 58.70
speaker+listener+reinforcer+MMI [5] 72.88 63.43 60.43 48.74 59.51
Variational Context [38] 73.33 67.44 58.40 53.18 62.30
A-ATT-1 73.43 64.11 59.35 50.08 58.84
A-ATT-2 74.98 66.02 61.03 51.31 61.94
A-ATT-3 76.45 67.57 62.17 52.71 62.33
A-ATT-4 76.32 67.93 61.66 52.15 61.70
A-ATT-1 (noised training) 76.42 66.75 62.63 53.54 60.32
A-ATT-2 (noised training) 79.59 70.14 63.97 54.66 63.57
A-ATT-3 (noised training) 80.87 71.55 65.13 55.01 63.84
A-ATT-4 (noised training) 80.60 71.26 65.10 54.94 63.13

TABLE 4
Evaluate “noised” training strategy on previous methods. “origin”
denotes the baseline models in the original paper; “ours” denotes

applying our training strategy on the baseline models.

Methods TestA acc TestB acc
speaker+listener [5] 72.23 62.92
speaker+listener + noised training 75.07 65.36
speaker+listener+MMI [5] 72.95 62.43
speaker+listener+MMI+noised training 75.48 64.62
speaker+listener+MMI [5] 72.95 63.10
speaker+listener+MMI+noised training 75.32 65.51

tected object proposals. The results are recorded in Table
3, denoted by “A-ATT-1 ” to “A-ATT-4”. Similar to the ob-
servation in the last section, simply performing the A-ATT
mechanism for one round is able to produce comparable re-
sults with previous best results on TestA split of ReferCOCO
and ReferCOCO+. Adding another round of A-ATT (i.e., A-
ATT-2) leads to a big gain in accuracy (1.55% on ReferCOCO
TestA split and 1.89% on TestB split). Moreover, A-ATT-3
further improves the performance significantly (1.47% on
ReferCOCO TestA split and 1.55% on TestB split) on the
top of A-ATT-2, yielding the new state-of-the-art results on
almost all splits. These observations verify the effectiveness
of the proposed A-ATT mechanism on the dataset with
detected object proposals.

4.4 Performance of the “noised” training strategy

We then evaluate the effectiveness of the “noised” training
strategy on ReferCOCO, ReferCOCO+, and ReferCOCOg.
Different from the settings in Sec. 4.3, we do not share the
parameters among different rounds for models trained with
noised data in Table 3 so as to increase the representation
power of the model. However, for the models marked with
“noised training” in Table 1, the parameters in different
rounds are shared for fair comparisons.

4.4.1 Results on detected object proposals
We use SSD-detected [8] object proposals provided by [5] for
all comparisons. See Table 3, performing the noised training
strategy significantly improves the performance of all four
versions of the proposed A-ATT model on all dataset splits.

Moreover, with noised training strategy, the proposed A-
ATT mechanism achieves at least 1.5% and up to 7.5%
performance improvement over the previous best result.
These observations clearly demonstrate the superiority of
the proposed noised training strategy.

We further show how each training stage in our noised
training strategy contributes to the performance improve-
ment in Fig. 6. We observe that all three training stage
contribute to the improved final performance. Besides, we
can also observe the benefit brought by multi-round A-ATT,
as the performance of A-ATT grows steadily and clearly
when increasing the number of rounds from one to three.

4.4.2 Results on human-labeled object proposals

We also evaluate the noised training strategy on human-
labeled object proposals. Note that the bounding box re-
gressor is not needed, since we have already the ground-
truth bounding boxes. So we only use bounding box aug-
mentation in these cases. As shown in Table 1, the noised
training strategy improves the performance of the A-ATT
mechanism when inferred with human-labeled object pro-
posals, since it augments the training data which benefits
the generalization ability of the model. To be more specific,
A-ATT-3 and A-ATT-4 with noised training strategy set up
new state-of-the-art performance on the Val and TestA splits
of all datasets (improve the accuracy by 1% to 4.5%). On
TestB split, our methods also yield very close results to the
current state-of-the-art.

4.4.3 Apply our training strategy in other VG methods

To show the effectiveness of our noised training strat-
egy (i.e., bounding box augmentation + bounding box re-
gression + end-to-end fine-tuning), we apply it on some
other VG baselines. Here, we consider three baselines from
[5], namely, speaker+listener, speaker+listener+MMI, and
speaker+listener+MMI. As in [5], the module being used
for grounding the query are highlighted in bold. The results
are recorded in Table 4. From the table, we find that the
proposed noised training strategy boosts the performance
for all baselines. This suggests that the proposed training
strategy can be adopted as the basic configuration for gen-
eral VG methods, since it is very beneficial for the model
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Fig. 6. Effect of different training stages on the performance of three
A-ATT models, including A-ATT-1, A-ATT-2, and A-ATT-3. The training
procedure consists of three stages, namely, “bbox augmentation” (BA),
“bbox regression” (BR), and “e2e finetuning” (E2E). “None” denotes
models trained without noised training strategy.

performance while only brings tiny extra computation, and
is easy to use.

4.5 Ablation studies

In this section, we conduct extensive ablation studies on
each component in our VG model, including the attention
modules, the connections between attention modules, the
weight sharing strategy in attention modules, as well as
the feature extractors for each kind of input information.
Without specification, we conduct experiments based on A-
ATT-3 model without noised training strategy.

4.5.1 How do the connections between each attention
module affect the A-ATT mechanism?
We break the connections between attention modules to
analyze their importance. Specifically, we consider the fol-
lowing options:
1) A-ATT(w/o VO). Break the connections between the
object attention module and the image attention module, i.e.,
we remove the summarized representation of image feature
sequence from the object attention module and vice versa:

s̃r = ATTS({s̃t}r−1t=1 , ṽ
r−1, õr−1)

ṽr = ATTV (s̃r, {ṽt}r−1t=1 )

õr = ATTO(s̃r, {õt}r−1t=1 ).

2) A-ATT(w/o SO). Similarly, we break the connections
between the object attention module and the query attention
module: 

s̃r = ATTS({s̃t}r−1t=1 , ṽ
r−1)

ṽr = ATTV (s̃r, {ṽt}r−1t=1 , õ
r−1)

õr = ATTO(ṽr, {õt}r−1t=1 ).

3) A-ATT(w/o SV). Break the connections between the im-
age attention module and the query attention module:

s̃r = ATTS({s̃t}r−1t=1 , õ
r−1)

ṽr = ATTV ({ṽt}r−1t=1 , õ
r−1)

õr = ATTO(s̃r, ṽr, {õt}r−1t=1 ).

4) A-ATT(w/o Self). Remove all self-attention connections,
i.e., the original A-ATT mechanism in our conference paper
[14]: 

s̃ri = ATTS(ṽ
r−1, õr−1)

ṽri = ATTV (s̃r, õr−1)

õri = ATTO(s̃r, ṽr).

The results are shown in Fig. 7. From the figure, we find
that building connections between any two types of atten-
tion modules within the A-ATT mechanism are beneficial
for solving the VG task. Moreover, by breaking the self-
attention connections for each attention module, the model
performs even worse, which verifies the effectiveness of the
self-attention mechanism for VG tasks.

4.5.2 How do the image & query attention modules affect
the A-ATT mechanism?
When removing the attention modules on image or query,
we need to obtain the summarized feature representation di-
rectly from the input image or query like in many previous
works [1,2,4,6], instead of first extracting a feature sequence
from them and then summarizing the sequence. Following
these works, we obtain the image feature from the fc7 of
VGG-16 (4096-D), and adopt a linear layer to transform it
into a 512-D vector, denote as vcnn. For the query feature,
we use the hidden state in the last time step of the LSTM,
srnn. Particularly, we consider the following options:
1) A-ATT(w/o Query). Remove the query attention module:{

ṽr = ATTV (srnn, {ṽt}r−1t=1 , õ
r−1)

õr = ATTO(srnn, ṽ
r, {õt}r−1t=1 ).

2) A-ATT(w/o Image). Remove the image attention module:{
s̃r = ATTS({s̃t}r−1t=1 ,vcnn, õ

r−1)

õr = ATTO(s̃r,vcnn, {õt}r−1t=1 ).

3) Simple Matching. Remove both the query and image
attention modules, results in a simple matching model:

õr = ATTO(srnn,vcnn, {õt}r−1t=1 ).

The results are shown in Fig. 8. From the figure, we find
that each attention module plays an indispensable role in
our A-ATT mechanism, showing the effectiveness of the
attention module in improving the feature representation
of the input image and query.

4.5.3 How do the feature extractors affect the model perfor-
mance?
In our previous experiments, we use ImageNet pre-trained
VGG-16 to extract the image feature, and use an LSTM
to extract the query feature. In this section, we further
explore some alternate feature extractors for our VG model.
More precisely, we replace the VGG-16 model with ResNet-
101 as the image feature extractor, and pre-train it on MS
COCO [67] object detection task. We also replace LSTM with
bidirectional LSTM as the query feature extractor.

We test these alternatives on ReferCOCO with detected
and human-labeled object proposals, based on A-ATT-3
with noised training strategy, and show the results in Table
5. From the table, we observe that employing a better
feature extractor for image or query can indeed boost the
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Fig. 7. Effect of different connections between different modules on the proposed A-ATT method. We compare the performance of the A-ATT-3
models with different settings on ReferCOCO and ReferCOCO (detected) datasets.

TABLE 5
The empirical results of different feature extractors. Note that R-101 and R-152 denote ResNet-101 and ResNet-152, respectively. ‘†’ denotes

pre-trained on ImageNet image recognition task, ‘‡’ denotes pre-trained on MS COCO object detection task.

Methods feature extractor ReferCOCO ReferCOCO (detected)
Image Query Object Val acc TestA acc TestB acc TestA acc TestB acc

MattN [39] R-101‡ bi-LSTM RoIAlign 85.65 85.26 84.57 81.14 69.99
Multi-hop FiLM [40] R-152† bi-GRU R-152† 84.90 87.40 83.10 - -
A-ATT-3 (noised training) VGG-16† LSTM RoIAlign 82.10 82.98 81.78 80.87 71.55
A-ATT-3 (noised training) R-101‡ LSTM RoIAlign 84.34 85.12 83.97 82.65 73.29
A-ATT-3 (noised training) VGG-16† bi-LSTM RoIAlign 82.72 83.44 82.54 81.12 71.59
A-ATT-3 (noised training) R-101‡ bi-LSTM RoIAlign 85.39 85.56 84.51 82.97 73.48
A-ATT-3 (noised training) R-152† bi-LSTM RoIAlign 84.97 84.69 84.12 82.24 73.75

TABLE 6
The impact of the regularization term in Eqn. (12) and the parameter
sharing strategy among different rounds of A-ATT. The bold numbers

are related to the original settings and are obtained from Table 3.

settings ReferCOCO (detected) ReferCOCO+ (detected)
TestA acc TestB acc TestA acc TestB acc

A-ATT-3
shared 76.45 67.57 61.87 52.51
unshared 68.28 60.14 57.07 47.10
w/o Lx

reg 75.39 65.74 60.95 51.30
A-ATT-3 with noised training strategy

shared 79.63 70.22 64.26 54.58
unshared 80.87 71.55 65.13 55.01
w/o Lx

reg 80.15 71.12 64.06 53.69

performance of the A-ATT-3 model. By using the same
feature extractors, our A-ATT-3 model trained with noised
training strategy achieves comparable results with the pre-
vious state-of-the-art model MattN [39] on ReferCOCO with
human-labeled object proposals. Moreover, when using de-
tected object proposals for evaluation, our methods signif-
icantly outperform MattN (+1.83% on TestA, +3.49% on
TestB), indicating the superiority of the proposed methods
in dealing with inaccurate object proposals.

4.5.4 How do the regularization term and parameter shar-
ing strategy alleviate the over-fitting problem?
In this section, we analyse the impact of the regularization
term in Eqn. (12) and the parameter sharing strategy among

different rounds of A-ATT. We evaluate A-ATT-3 trained
with/without noised training strategy on ReferCOCO(+)
with detected object proposals.

As shown in Table 6, after removing the regularization
term in the training objective, the performance of A-ATT-3
models consistently drop by a notable margin, indicating
that the regularizer used in our training objective has a
positive effect the model performance.

Apart from this, we also find that A-ATT models trained
without noised training strategy can be very sensitive to the
parameter sharing strategy, e.g., the performance of A-ATT-
3 declines severely on both ReferCOCO and ReferCOCO+
when each round of A-ATT keeps its own parameters.
However, after switching to noised training, we observe
a significant performance improvement (about %10) for
the same model setting. These observations show that our
noised training strategy is able to effectively address data
distribution gap issue for the proposed A-ATT mechanism
on VG tasks.

4.6 Visualization of the attention
We further visualize the attention weights on query and
image for ReferCOCO, ReferCOCO+, and ReferCOCOg,
as shown in Figure 9. We observe that the attention for
different types of information tend to focus on the items that
are correlated semantically or spatially. For example, on the
ReferCOCO dataset, in the first column of the visualization
results, the most focused word in the query is “person”,
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Fig. 8. Effect of the query attention module and the image attention module on the proposed A-ATT method. We compare the performance of the
A-ATT-3 models with different settings on ReferCOCO and ReferCOCO (detected) datasets.

yellow shirt

cat faces to us section with strawberries

full red bike with black coat man A black and silver laptop 
on a wooden desk

baby cow with a yellow tag on its ear

Fig. 9. Visualization of attention of our A-ATT-3 model on ReferCOCO, ReferCOCO+, and ReferCOCOg. In the image, the brighter regions
correspond to a larger attention weights; in the query, we mark the words with attention weighs larger than 0.3 or 0.1 with yellow blocks or
blue blocks, respectively. The target object for each image-query pair is outlined by a red box.

while in the image the relevant regions are assigned with
larger attention weights. This means that different kinds
of information can provide useful guidance for each other
through the proposed A-ATT mechanism.

Moreover, to illustrate the effect of the attention accu-
mulating, we visualize the attention on ReferCOCOg at
different rounds of the A-ATT mechanism. The results are
shown in Figure 10. Obviously, from the first round (A-
ATT-1) to the fourth round (A-ATT-4), the attention weights
on both image and the query tend to concentrate on more
relevant parts of the information (i.e., the target regions in
the image, and keywords in the query).

5 CONCLUSION

In this paper, we have proposed a novel accumulated atten-
tion (A-ATT) mechanism to ground the natural language
query into the image. Our model utilizes three kinds of
information, i.e., query, image and objects proposals, and
provide an attention module to handle the attention prob-
lem for each information. Moreover, the A-ATT mechanism
builds rich connections among the attention modules for
knowledge transferring and accumulation. In this way, the
noises and redundancy will decrease gradually, leading to
an improved performance. On top of A-ATT mechanism,
we further propose to use a “noised” training strategy to
boost the performance of our VG models. Our model is able
to deal with various types of queries, ranging from short
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Fig. 10. Evolution of attention accumulating. We visualize the attention for A-ATT-{1,2,3,4}.

phrases to long dialogues. We evaluate the effectiveness of
the proposed method on four popular datasets. Extensive
experiments demonstrate the superior performance of the
proposed methods over existing methods.
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